These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29301052)

  • 1. Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings.
    Toca A; Oliet JA; Villar-Salvador P; Maroto J; Jacobs DF
    Tree Physiol; 2018 Jan; 38(1):96-108. PubMed ID: 29301052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.
    Villar-Salvador P; Peñuelas JL; Jacobs DF
    Tree Physiol; 2013 Feb; 33(2):221-32. PubMed ID: 23370549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism.
    Fernández-Pérez L; Villar-Salvador P; Martínez-Vilalta J; Toca A; Zavala MA
    Tree Physiol; 2018 Apr; 38(4):507-516. PubMed ID: 29325114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing growth, frost tolerance, and acclimation of pine seedlings with contrasted dormancy strategies as influenced by organic nitrogen supply.
    Sigala JA; Oliet JA; Uscola M
    Physiol Plant; 2021 Nov; 173(3):1105-1119. PubMed ID: 34287917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normalization criteria determine the interpretation of nitrogen effects on the root hydraulics of pine seedlings.
    Toca A; Villar-Salvador P; Oliet JA; Jacobs DF
    Tree Physiol; 2020 Oct; 40(10):1381-1391. PubMed ID: 32483620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-plant frost hardiness of mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal Scots pine seedlings.
    Korhonen A; Lehto T; Heinonen J; Repo T
    Tree Physiol; 2019 Apr; 39(4):526-535. PubMed ID: 30371901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.
    Chang CY; Fréchette E; Unda F; Mansfield SD; Ensminger I
    Plant Physiol; 2016 Oct; 172(2):802-818. PubMed ID: 27591187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.
    Korhonen A; Lehto T; Repo T
    Mycorrhiza; 2015 Jul; 25(5):377-86. PubMed ID: 25404213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply.
    Gruffman L; Palmroth S; Näsholm T
    Tree Physiol; 2013 Jun; 33(6):590-600. PubMed ID: 23824240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings.
    Arduini I; Godbold DL; Onnis A
    Tree Physiol; 1995 Jun; 15(6):411-5. PubMed ID: 14965951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines.
    Kuusk V; Niinemets Ü; Valladares F
    Tree Physiol; 2018 Apr; 38(4):543-557. PubMed ID: 29281105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrogen supply on frost resistance, nitrogen metabolism and carbohydrate content in white clover (Trifolium repens).
    Sandli N; Svenning MM; Røsnes K; Junttila O
    Physiol Plant; 1993 Aug; 88(4):661-667. PubMed ID: 28741772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon and phosphorus partitioning in Pinus serotina seedlings growing under hypoxic and low-phosphorus conditions.
    Topa MA; Cheeseman JM
    Tree Physiol; 1992 Mar; 10(2):195-207. PubMed ID: 14969869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening.
    Tinus RW; Burr KE; Atzmon N; Riov J
    Tree Physiol; 2000 Oct; 20(16):1097-104. PubMed ID: 11269961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast, nondestructive measurement of frost hardiness in conifer seedlings by VIS+NIR spectroscopy.
    Sundblad LG; Andersson M; Geladi P; Salomonson A; Sjöström M
    Tree Physiol; 2001 Jul; 21(11):751-7. PubMed ID: 11470661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation.
    Vapaavuori EM; Rikala R; Ryyppö A
    Tree Physiol; 1992 Apr; 10(3):217-30. PubMed ID: 14969980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aftereffects of maternal environment on autumn frost hardiness in Pinus sylvestris seedlings in relation to cultivation techniques.
    Andersson B
    Tree Physiol; 1994 Mar; 14(3):313-22. PubMed ID: 14967705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature control of the development of frost hardiness in two populations of Leptospermum scoparium.
    Greer DH; Robinson LA
    Tree Physiol; 1995 Jun; 15(6):399-404. PubMed ID: 14965949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.
    Phillips RP; Bernhardt ES; Schlesinger WH
    Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought tolerance and acclimation in Pinus ponderosa seedlings: the influence of nitrogen form.
    Sigala JA; Uscola M; Oliet JA; Jacobs DF
    Tree Physiol; 2020 Aug; 40(9):1165-1177. PubMed ID: 32333785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.