BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29301069)

  • 1. Characterization of the Structural and Colloidal Properties of α-Lactalbumin/Chitosan Complexes as a Function of Heating.
    Li Q; Zhao Z
    J Agric Food Chem; 2018 Jan; 66(4):972-978. PubMed ID: 29301069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal characteristics, emulsifying activities, and interfacial properties of α-lactalbumin-chitosan electrostatic complexes: effects of mass ratio and pH.
    Liu Y; Fan Y; Wu X; Lu Y; Yi J
    Food Funct; 2020 Feb; 11(2):1740-1753. PubMed ID: 32043514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability.
    Zhai J; Hoffmann SV; Day L; Lee TH; Augustin MA; Aguilar MI; Wooster TJ
    Langmuir; 2012 Feb; 28(5):2357-67. PubMed ID: 22201548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denaturation and aggregation of three alpha-lactalbumin preparations at neutral pH.
    McGuffey MK; Epting KL; Kelly RM; Foegeding EA
    J Agric Food Chem; 2005 Apr; 53(8):3182-90. PubMed ID: 15826076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the temperature dependence of complex formation between chitosan and proteins.
    Kasimova MR; Velázquez-Campoy A; Nielsen HM
    Biomacromolecules; 2011 Jul; 12(7):2534-43. PubMed ID: 21591796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent complexation and functional evaluation of (-)-epigallocatechin gallate and α-lactalbumin.
    Wang X; Zhang J; Lei F; Liang C; Yuan F; Gao Y
    Food Chem; 2014 May; 150():341-7. PubMed ID: 24360460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.
    Lajnaf R; Picart-Palmade L; Attia H; Marchesseau S; Ayadi MA
    Colloids Surf B Biointerfaces; 2017 Mar; 151():287-294. PubMed ID: 28038415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of interaction, structure, and cell proliferation of α-lactalbumin-safflower yellow complex induced by microwave heating or conventional heating.
    Li T; Li J; Huang Y; Qayum A; Jiang Z; Liu Z
    J Sci Food Agric; 2023 Mar; 103(4):1846-1855. PubMed ID: 36347624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic cross-linking of α-lactalbumin to produce nanoparticles with increased foam stability.
    Dhayal SK; Delahaije RJ; de Vries RJ; Gruppen H; Wierenga PA
    Soft Matter; 2015 Oct; 11(40):7888-98. PubMed ID: 26327613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycation and phosphorylation of alpha-lactalbumin by dry heating: effect on protein structure and physiological functions.
    Enomoto H; Hayashi Y; Li CP; Ohki S; Ohtomo H; Shiokawa M; Aoki T
    J Dairy Sci; 2009 Jul; 92(7):3057-68. PubMed ID: 19528583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and stability analysis of cytotoxic complex of camel α-lactalbumin and unsaturated fatty acids produced at high temperature.
    Atri MS; Saboury AA; Moosavi-Movahedi AA; Goliaei B; Sefidbakht Y; Alijanvand HH; Sharifzadeh A; Niasari-Naslaji A
    J Biomol Struct Dyn; 2011 Jun; 28(6):919-28. PubMed ID: 21469752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A differential scanning calorimetric study of the influence of copper and dodecyl trimethyl ammonium bromide on the stability of bovine alpha-lactalbumin.
    Housaindokht MR; Chamani J; Moosavi-Movahedi AA
    Int J Biol Macromol; 2005 Aug; 36(3):169-75. PubMed ID: 16019061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of α-Lactalbumin Aggregation by Modulation of Temperature and Concentration of Calcium and Cysteine.
    Nielsen LR; Nielsen SB; Zhao Z; Olsen K; Nielsen JH; Lund MN
    J Agric Food Chem; 2018 Jul; 66(27):7110-7120. PubMed ID: 29916707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of alpha-lactalbumin adsorbed at a charged brush interface.
    Hollmann O; Steitz R; Czeslik C
    Phys Chem Chem Phys; 2008 Mar; 10(10):1448-56. PubMed ID: 18309402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Lactalbumin and chitosan core-shell nanoparticles: resveratrol loading, protection, and antioxidant activity.
    Liu Y; Gao L; Yi J; Fan Y; Wu X; Zhang Y
    Food Funct; 2020 Feb; 11(2):1525-1536. PubMed ID: 31995080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation.
    Lavertu M; Filion D; Buschmann MD
    Biomacromolecules; 2008 Feb; 9(2):640-50. PubMed ID: 18186608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant and antibacterial activities, interfacial and emulsifying properties of the apo and holo forms of purified camel and bovine α-lactalbumin.
    Lajnaf R; Gharsallah H; Jridi M; Attia H; Ayadi MA
    Int J Biol Macromol; 2020 Dec; 165(Pt A):205-213. PubMed ID: 32991904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Desolvating Agent Types, Ratios, and Temperature on Size and Nanostructure of Nanoparticles from α-Lactalbumin and Ovalbumin.
    Etorki AM; Gao M; Sadeghi R; Maldonado-Mejia LF; Kokini JL
    J Food Sci; 2016 Oct; 81(10):E2511-E2520. PubMed ID: 27636231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics and antioxidant activity of Maillard reaction products from α-lactalbumin and 2'-fucosyllactose.
    Tu Y; Xu Y; Ren F; Zhang H
    Food Chem; 2020 Jun; 316():126341. PubMed ID: 32058194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis.
    Polverino de Laureto P; Frare E; Gottardo R; Fontana A
    Proteins; 2002 Nov; 49(3):385-97. PubMed ID: 12360528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.