These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29301077)

  • 1. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals.
    Stoychev GL; Auer AA; Izsák R; Neese F
    J Chem Theory Comput; 2018 Feb; 14(2):619-637. PubMed ID: 29301077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory.
    Stoychev GL; Auer AA; Neese F
    J Chem Theory Comput; 2018 Sep; 14(9):4756-4771. PubMed ID: 30048136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-hybrid density functional theory for g-tensor calculations using gauge including atomic orbitals.
    Tran VA; Neese F
    J Chem Phys; 2020 Aug; 153(5):054105. PubMed ID: 32770923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals.
    Loibl S; Schütz M
    J Chem Phys; 2014 Jul; 141(2):024108. PubMed ID: 25028000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants.
    Harding ME; Lenhart M; Auer AA; Gauss J
    J Chem Phys; 2008 Jun; 128(24):244111. PubMed ID: 18601321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attractive electron-electron interactions within robust local fitting approximations.
    Merlot P; Kjærgaard T; Helgaker T; Lindh R; Aquilante F; Reine S; Pedersen TB
    J Comput Chem; 2013 Jun; 34(17):1486-96. PubMed ID: 23553369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General orbital invariant MP2-F12 theory.
    Werner HJ; Adler TB; Manby FR
    J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD).
    Schwilk M; Ma Q; Köppl C; Werner HJ
    J Chem Theory Comput; 2017 Aug; 13(8):3650-3675. PubMed ID: 28661673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR shielding tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge including atomic orbitals.
    Loibl S; Schütz M
    J Chem Phys; 2012 Aug; 137(8):084107. PubMed ID: 22938218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets.
    Watson MA; Handy NC; Cohen AJ; Helgaker T
    J Chem Phys; 2004 Apr; 120(16):7252-61. PubMed ID: 15267634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method.
    Kossmann S; Neese F
    J Chem Theory Comput; 2010 Aug; 6(8):2325-38. PubMed ID: 26613489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR shielding tensors from auxiliary density functional theory.
    Zuniga-Gutierrez B; Geudtner G; Köster AM
    J Chem Phys; 2011 Mar; 134(12):124108. PubMed ID: 21456646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Calculation of NMR Chemical Shifts in Periodic Systems Based on Gauge Including Atomic Orbitals and Density Functional Theory.
    Skachkov D; Krykunov M; Kadantsev E; Ziegler T
    J Chem Theory Comput; 2010 May; 6(5):1650-9. PubMed ID: 26615697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of Magnetic Shielding Constants with meta-GGA Functionals Employing the Multipole-Accelerated Resolution of the Identity: Implementation and Assessment of Accuracy and Efficiency.
    Reiter K; Mack F; Weigend F
    J Chem Theory Comput; 2018 Jan; 14(1):191-197. PubMed ID: 29232503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basis set convergence studies of Hartree-Fock calculations of molecular properties within the resolution of the identity approximation.
    Artemyev A; Bibikov A; Zayets V; Bodrenko I
    J Chem Phys; 2005 Jul; 123(2):24103. PubMed ID: 16050737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclei-selected atomic-orbital response-theory formulation for the calculation of NMR shielding tensors using density-fitting.
    Kumar C; Kjærgaard T; Helgaker T; Fliegl H
    J Chem Phys; 2016 Dec; 145(23):234108. PubMed ID: 28010085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximations to self-consistent field molecular wavefunctions.
    Halgren TA; Lipscomb WN
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):652-6. PubMed ID: 16591968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.