BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29301095)

  • 1. Metabolic engineering of Escherichia coli for the production of indirubin from glucose.
    Du J; Yang D; Luo ZW; Lee SY
    J Biotechnol; 2018 Feb; 267():19-28. PubMed ID: 29301095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation.
    Han GH; Gim GH; Kim W; Seo SI; Kim SW
    J Biotechnol; 2012 Dec; 164(2):179-87. PubMed ID: 22954889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters.
    Kim HJ; Ham S; Shin N; Hwang JH; Oh SJ; Choi TR; Joo JC; Bhatia SK; Yang YH
    J Microbiol Biotechnol; 2024 Apr; 34(4):969-977. PubMed ID: 38213292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli].
    Li YH; Liu Y; Wang SC; Tong ZY; Xu QS
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli.
    Lee J; Kim J; Song JE; Song WS; Kim EJ; Kim YG; Jeong HJ; Kim HR; Choi KY; Kim BG
    Nat Chem Biol; 2021 Jan; 17(1):104-112. PubMed ID: 33139950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin.
    Ameria SP; Jung HS; Kim HS; Han SS; Kim HS; Lee JH
    Biotechnol Lett; 2015 Aug; 37(8):1637-44. PubMed ID: 25851950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway.
    Fang MY; Zhang C; Yang S; Cui JY; Jiang PX; Lou K; Wachi M; Xing XH
    Microb Cell Fact; 2015 Jan; 14():8. PubMed ID: 25592762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering].
    Li Y; Zhu J; Wang J; Xia H; Wu S
    Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):41-50. PubMed ID: 27363197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli.
    Tatarko M; Romeo T
    Curr Microbiol; 2001 Jul; 43(1):26-32. PubMed ID: 11375660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of Toluene 4-Monooxygenase Genes and Application of Two-Phase System to the Production of the Anticancer Agent, Indirubin.
    Wongsaroj L; Sallabhan R; Dubbs JM; Mongkolsuk S; Loprasert S
    Mol Biotechnol; 2015 Aug; 57(8):720-6. PubMed ID: 25779640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression.
    Shen T; Liu Q; Xie X; Xu Q; Chen N
    J Biomed Biotechnol; 2012; 2012():605219. PubMed ID: 22791961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production.
    Chen Y; Liu Y; Ding D; Cong L; Zhang D
    J Ind Microbiol Biotechnol; 2018 May; 45(5):357-367. PubMed ID: 29460214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli.
    Gosset G; Yong-Xiao J; Berry A
    J Ind Microbiol; 1996 Jul; 17(1):47-52. PubMed ID: 8987689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of metabolic engineering to improve both the production and use of biotech indigo.
    Berry A; Dodge TC; Pepsin M; Weyler W
    J Ind Microbiol Biotechnol; 2002 Mar; 28(3):127-33. PubMed ID: 12074085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli.
    Gu P; Yang F; Kang J; Wang Q; Qi Q
    Microb Cell Fact; 2012 Mar; 11():30. PubMed ID: 22380540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.
    Escalante A; Calderón R; Valdivia A; de Anda R; Hernández G; Ramírez OT; Gosset G; Bolívar F
    Microb Cell Fact; 2010 Apr; 9():21. PubMed ID: 20385022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.