BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2930197)

  • 1. Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation of adrenal glomerulosa cells by angiotensin II.
    Balla T; Hausdorff WP; Baukal AJ; Catt KJ
    Arch Biochem Biophys; 1989 Apr; 270(1):398-403. PubMed ID: 2930197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between agonist- and thapsigargin-sensitive calcium pools in adrenal glomerulosa cells. Thapsigargin-induced Ca2+ mobilization and entry.
    Ely JA; Ambroz C; Baukal AJ; Christensen SB; Balla T; Catt KJ
    J Biol Chem; 1991 Oct; 266(28):18635-41. PubMed ID: 1917986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist-induced regulation of inositol tetrakisphosphate isomers and inositol pentakisphosphate in adrenal glomerulosa cells.
    Balla T; Baukal AJ; Hunyady L; Catt KJ
    J Biol Chem; 1989 Aug; 264(23):13605-11. PubMed ID: 2547768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of inositol-1,3,4,6-tetrakisphosphate to inositol pentakisphosphate in adrenal glomerulosa cells.
    Hunyady L; Baukal AJ; Guillemette G; Balla T; Catt KJ
    Biochem Biophys Res Commun; 1988 Dec; 157(3):1247-52. PubMed ID: 2981054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of dihydropyridine-sensitive calcium channels and biphasic cytosolic calcium responses by angiotensin II in rat adrenal glomerulosa cells.
    Hausdorff WP; Catt KJ
    Endocrinology; 1988 Dec; 123(6):2818-26. PubMed ID: 2461852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation sensitivity of inositol 1,4,5-trisphosphate production and metabolism in agonist-stimulated adrenal glomerulosa cells.
    Balla T; Nakanishi S; Catt KJ
    J Biol Chem; 1994 Jun; 269(23):16101-7. PubMed ID: 7515876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple pathways of inositol polyphosphate metabolism in angiotensin-stimulated adrenal glomerulosa cells.
    Balla T; Baukal AJ; Guillemette G; Catt KJ
    J Biol Chem; 1988 Mar; 263(9):4083-91. PubMed ID: 3257963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of agonist-induced inositol phosphate metabolism by cyclic adenosine 3',5'-monophosphate in adrenal glomerulosa cells.
    Baukal AJ; Hunyady L; Balla T; Ely JA; Catt KJ
    Mol Endocrinol; 1990 Nov; 4(11):1712-9. PubMed ID: 2280773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin-stimulated production of inositol trisphosphate isomers and rapid metabolism through inositol 4-monophosphate in adrenal glomerulosa cells.
    Balla T; Baukal AJ; Guillemette G; Morgan RO; Catt KJ
    Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9323-7. PubMed ID: 3025836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of agonist-stimulated inositol 1,4,5-trisphosphate production and calcium signaling by the myosin light chain kinase inhibitor, wortmannin.
    Nakanishi S; Catt KJ; Balla T
    J Biol Chem; 1994 Mar; 269(9):6528-35. PubMed ID: 8120005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different patterns of agonist-stimulated increases of 3H-inositol phosphate isomers and cytosolic Ca2+ in bovine adrenal chromaffin cells: comparison of the effects of histamine and angiotensin II.
    Stauderman KA; Pruss RM
    J Neurochem; 1990 Mar; 54(3):946-53. PubMed ID: 2303821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-induced formation and metabolism of inositol polyphosphates in bovine adrenal glomerulosa cells.
    Guillemette G; Baukal AJ; Balla T; Catt KJ
    Biochem Biophys Res Commun; 1987 Jan; 142(1):15-22. PubMed ID: 3028399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early and late effects of angiotensin-II on Ca2+ fluxes in bovine adrenal zona glomerulosa cells.
    Cirillo M; Quinn SJ; Canessa ML
    Endocrinology; 1993 May; 132(5):1921-30. PubMed ID: 8477644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells.
    Balla T; Guillemette G; Baukal AJ; Catt KJ
    Biochem Biophys Res Commun; 1987 Oct; 148(1):199-205. PubMed ID: 3675574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures and metabolism of inositol tetrakisphosphates and inositol pentakisphosphate in bovine adrenal glomerulosa cells.
    Balla T; Hunyady L; Baukal AJ; Catt KJ
    J Biol Chem; 1989 Jun; 264(16):9386-90. PubMed ID: 2722840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inositol trisphosphate isomers in angiotensin II-stimulated adrenal glomerulosa cells.
    Rossier MF; Capponi AM; Vallotton MB
    Mol Cell Endocrinol; 1988 Jun; 57(3):163-8. PubMed ID: 3261266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates.
    Catt KJ; Balla T; Baukal AJ; Hausdorff WP; Aguilera G
    Clin Exp Pharmacol Physiol; 1988 Jul; 15(7):501-15. PubMed ID: 3152162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External calcium is required for activation of phospholipase C by angiotensin II in adrenal glomerulosa cells.
    Foster RH; Davis JS; Farese RV
    Mol Cell Biochem; 1990 Jun; 95(2):157-66. PubMed ID: 2366756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal growth factor and angiotensin II stimulate formation of inositol 1,4,5- and inositol 1,3,4-trisphosphate in hepatocytes. Differential inhibition by pertussis toxin and phorbol 12-myristate 13-acetate.
    Johnson RM; Garrison JC
    J Biol Chem; 1987 Dec; 262(36):17285-93. PubMed ID: 3500949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist-induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor-operated calcium entry.
    Hunyady L; Merelli F; Baukal AJ; Balla T; Catt KJ
    J Biol Chem; 1991 Feb; 266(5):2783-8. PubMed ID: 1993657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.