BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 29301985)

  • 1. Phase separation of a yeast prion protein promotes cellular fitness.
    Franzmann TM; Jahnel M; Pozniakovsky A; Mahamid J; Holehouse AS; Nüske E; Richter D; Baumeister W; Grill SW; Pappu RV; Hyman AA; Alberti S
    Science; 2018 Jan; 359(6371):. PubMed ID: 29301985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three faces of Sup35.
    Lyke DR; Dorweiler JE; Manogaran AL
    Yeast; 2019 Aug; 36(8):465-472. PubMed ID: 30963611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolysis suppresses spontaneous prion generation in yeast.
    Okamoto A; Hosoda N; Tanaka A; Newnam GP; Chernoff YO; Hoshino SI
    J Biol Chem; 2017 Dec; 292(49):20113-20124. PubMed ID: 29038292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton.
    Li X; Rayman JB; Kandel ER; Derkatch IL
    Mol Cell; 2014 Jul; 55(2):305-18. PubMed ID: 24981173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Modification of [PSI+] prion properties by the combination of amino acid changes within Sup35 protein N-domain].
    Bondarev SA; Shirokolobova ED; Trubitsyna NP; Zhuravleva GA
    Mol Biol (Mosk); 2014; 48(2):314-21. PubMed ID: 25850301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion.
    Doronina VA; Staniforth GL; Speldewinde SH; Tuite MF; Grant CM
    Mol Microbiol; 2015 Apr; 96(1):163-74. PubMed ID: 25601439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Nucleation In Vivo Reveals the Physical Basis of Prion-like Phase Behavior.
    Khan T; Kandola TS; Wu J; Venkatesan S; Ketter E; Lange JJ; Rodríguez Gama A; Box A; Unruh JR; Cook M; Halfmann R
    Mol Cell; 2018 Jul; 71(1):155-168.e7. PubMed ID: 29979963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminidependens (LD) is an Arabidopsis protein with prion behavior.
    Chakrabortee S; Kayatekin C; Newby GA; Mendillo ML; Lancaster A; Lindquist S
    Proc Natl Acad Sci U S A; 2016 May; 113(21):6065-70. PubMed ID: 27114519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian amyloidogenic proteins promote prion nucleation in yeast.
    Chandramowlishwaran P; Sun M; Casey KL; Romanyuk AV; Grizel AV; Sopova JV; Rubel AA; Nussbaum-Krammer C; Vorberg IM; Chernoff YO
    J Biol Chem; 2018 Mar; 293(9):3436-3450. PubMed ID: 29330303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation.
    Aslam K; Tsai CJ; Hazbun TR
    Prion; 2016 Nov; 10(6):444-465. PubMed ID: 27690738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1.
    Matveenko AG; Drozdova PB; Belousov MV; Moskalenko SE; Bondarev SA; Barbitoff YA; Nizhnikov AA; Zhouravleva GA
    Genes Cells; 2016 Dec; 21(12):1290-1308. PubMed ID: 27734597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prion-based memory of heat stress in yeast.
    Chernova TA; Chernoff YO; Wilkinson KD
    Prion; 2017 May; 11(3):151-161. PubMed ID: 28521568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].
    Yin W; He J; Yu Z; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast.
    Mathur V; Taneja V; Sun Y; Liebman SW
    Mol Biol Cell; 2010 May; 21(9):1449-61. PubMed ID: 20219972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of Hsp104 with yeast prion Sup35 as analyzed by fluorescence cross-correlation spectroscopy.
    Ohta S; Kawai-Noma S; Kitamura A; Pack CG; Kinjo M; Taguchi H
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):28-32. PubMed ID: 24216111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hnRNP-like Nab3 termination factor can employ heterologous prion-like domains in place of its own essential low complexity domain.
    Loya TJ; O'Rourke TW; Reines D
    PLoS One; 2017; 12(10):e0186187. PubMed ID: 29023495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies 'species barriers'.
    Bateman DA; Wickner RB
    Genetics; 2012 Feb; 190(2):569-79. PubMed ID: 22095075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.