These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 29302008)
1. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Acome E; Mitchell SK; Morrissey TG; Emmett MB; Benjamin C; King M; Radakovitz M; Keplinger C Science; 2018 Jan; 359(6371):61-65. PubMed ID: 29302008 [TBL] [Abstract][Full Text] [Related]
2. An Easy-to-Implement Toolkit to Create Versatile and High-Performance HASEL Actuators for Untethered Soft Robots. Mitchell SK; Wang X; Acome E; Martin T; Ly K; Kellaris N; Venkata VG; Keplinger C Adv Sci (Weinh); 2019 Jul; 6(14):1900178. PubMed ID: 31380206 [TBL] [Abstract][Full Text] [Related]
3. Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers. Ly K; Kellaris N; McMorris D; Johnson BK; Acome E; Sundaram V; Naris M; Humbert JS; Rentschler ME; Keplinger C; Correll N Soft Robot; 2021 Dec; 8(6):673-686. PubMed ID: 33001742 [TBL] [Abstract][Full Text] [Related]
4. Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Kellaris N; Gopaluni Venkata V; Smith GM; Mitchell SK; Keplinger C Sci Robot; 2018 Jan; 3(14):. PubMed ID: 33141696 [TBL] [Abstract][Full Text] [Related]
5. HASEL Artificial Muscles for a New Generation of Lifelike Robots-Recent Progress and Future Opportunities. Rothemund P; Kellaris N; Mitchell SK; Acome E; Keplinger C Adv Mater; 2021 May; 33(19):e2003375. PubMed ID: 33166000 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of electrohydraulic soft actuators. Rothemund P; Kirkman S; Keplinger C Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16207-16213. PubMed ID: 32601189 [TBL] [Abstract][Full Text] [Related]
7. Design of a High-Speed Prosthetic Finger Driven by Peano-HASEL Actuators. Yoder Z; Kellaris N; Chase-Markopoulou C; Ricken D; Mitchell SK; Emmett MB; Weir RFF; Segil J; Keplinger C Front Robot AI; 2020; 7():586216. PubMed ID: 33501343 [TBL] [Abstract][Full Text] [Related]
8. Self-contained soft electrofluidic actuators. Tang W; Lin Y; Zhang C; Liang Y; Wang J; Wang W; Ji C; Zhou M; Yang H; Zou J Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34417171 [TBL] [Abstract][Full Text] [Related]
9. Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers. Gerez L; Chang CM; Liarokapis M Front Robot AI; 2020; 7():601274. PubMed ID: 33501363 [TBL] [Abstract][Full Text] [Related]
15. Strategies to Control Performance of 3D-Printed, Cable-Driven Soft Polymer Actuators: From Simple Architectures to Gripper Prototype. Slesarenko V; Engelkemier S; Galich PI; Vladimirsky D; Klein G; Rudykh S Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960772 [TBL] [Abstract][Full Text] [Related]
16. An Ultra High Gain Converter for Driving HASEL Actuator Used in Soft Mobile Robots. Lodh T; Le HP Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810384 [TBL] [Abstract][Full Text] [Related]
18. What is an artificial muscle? A comparison of soft actuators to biological muscles. Higueras-Ruiz DR; Nishikawa K; Feigenbaum H; Shafer M Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34792040 [TBL] [Abstract][Full Text] [Related]
19. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Shintake J; Rosset S; Schubert B; Floreano D; Shea H Adv Mater; 2016 Jan; 28(2):231-8. PubMed ID: 26551665 [TBL] [Abstract][Full Text] [Related]
20. Bio-SHARPE: Bioinspired Soft and High Aspect Ratio Pumping Element for Robotic and Medical Applications. Davies J; Thai MT; Low H; Phan PT; Hoang TT; Lovell NH; Do TN Soft Robot; 2023 Dec; 10(6):1055-1069. PubMed ID: 37130309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]