These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 29302354)

  • 1. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.
    Wissing TB; Bonito V; Bouten CVC; Smits AIPM
    NPJ Regen Med; 2017; 2():18. PubMed ID: 29302354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular Mechanobiology: Towards Control of In Situ Regeneration.
    van Haaften EE; Bouten CVC; Kurniawan NA
    Cells; 2017 Jul; 6(3):. PubMed ID: 28671618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only.
    Talacua H; Smits AI; Muylaert DE; van Rijswijk JW; Vink A; Verhaar MC; Driessen-Mol A; van Herwerden LA; Bouten CV; Kluin J; Baaijens FP
    Tissue Eng Part A; 2015 Oct; 21(19-20):2583-94. PubMed ID: 26200255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering.
    Bouten CVC; Smits AIPM; Baaijens FPT
    Front Cardiovasc Med; 2018; 5():54. PubMed ID: 29896481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional regeneration at the blood-biomaterial interface.
    Ibrahim DM; Fomina A; Bouten CVC; Smits AIPM
    Adv Drug Deliv Rev; 2023 Oct; 201():115085. PubMed ID: 37690484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.
    Smits AI; Driessen-Mol A; Bouten CV; Baaijens FP
    Tissue Eng Part C Methods; 2012 Jun; 18(6):475-85. PubMed ID: 22224590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers.
    Bonito V; Smits AIPM; Goor OJGM; Ippel BD; Driessen-Mol A; Münker TJAG; Bosman AW; Mes T; Dankers PYW; Bouten CVC
    Acta Biomater; 2018 Apr; 71():247-260. PubMed ID: 29518556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold.
    Duijvelshoff R; van Engeland NCA; Gabriels KMR; Söntjens SHM; Smits AIPM; Dankers PYW; Bouten CVC
    Bioengineering (Basel); 2018 Aug; 5(3):. PubMed ID: 30082586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds.
    Muylaert DE; Fledderus JO; Bouten CV; Dankers PY; Verhaar MC
    Heart; 2014 Dec; 100(23):1825-30. PubMed ID: 25053725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering.
    Wissing TB; van Haaften EE; Koch SE; Ippel BD; Kurniawan NA; Bouten CVC; Smits AIPM
    Biomater Sci; 2019 Dec; 8(1):132-147. PubMed ID: 31709425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The surrounding tissue contributes to smooth muscle cells' regeneration and vascularization of small diameter vascular grafts.
    Liu J; Qin Y; Wu Y; Sun Z; Li B; Jing H; Zhang C; Li C; Leng X; Wang Z; Kong D
    Biomater Sci; 2019 Feb; 7(3):914-925. PubMed ID: 30511718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.
    Xue Y; Sant V; Phillippi J; Sant S
    Acta Biomater; 2017 Jan; 48():2-19. PubMed ID: 27780764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrates for cardiovascular tissue engineering.
    Bouten CV; Dankers PY; Driessen-Mol A; Pedron S; Brizard AM; Baaijens FP
    Adv Drug Deliv Rev; 2011 Apr; 63(4-5):221-41. PubMed ID: 21277921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing the Properties of Biomaterial to Enhance the Immunomodulation of Mesenchymal Stem Cells.
    Chen Y; Shu Z; Qian K; Wang J; Zhu H
    Tissue Eng Part B Rev; 2019 Dec; 25(6):492-499. PubMed ID: 31436142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration.
    Vasconcelos DP; Águas AP; Barbosa MA; Pelegrín P; Barbosa JN
    Acta Biomater; 2019 Jan; 83():1-12. PubMed ID: 30273748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.
    Sadtler K; Estrellas K; Allen BW; Wolf MT; Fan H; Tam AJ; Patel CH; Luber BS; Wang H; Wagner KR; Powell JD; Housseau F; Pardoll DM; Elisseeff JH
    Science; 2016 Apr; 352(6283):366-70. PubMed ID: 27081073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms.
    Castaño O; Pérez-Amodio S; Navarro-Requena C; Mateos-Timoneda MÁ; Engel E
    Adv Drug Deliv Rev; 2018 Apr; 129():95-117. PubMed ID: 29627369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications.
    Chandra P; Atala A
    Clin Sci (Lond); 2019 May; 133(9):1115-1135. PubMed ID: 31088895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foreign body reaction to biomaterials.
    Anderson JM; Rodriguez A; Chang DT
    Semin Immunol; 2008 Apr; 20(2):86-100. PubMed ID: 18162407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.