BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29302608)

  • 1. Stimulated Raman scattering spectroscopic optical coherence tomography.
    Robles FE; Zhou KC; Fischer MC; Warren WS
    Optica; 2017 Feb; 4(2):243-246. PubMed ID: 29302608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free detection of brain tumors in a 9L gliosarcoma rat model using stimulated Raman scattering-spectroscopic optical coherence tomography.
    Soltani S; Guang Z; Zhang Z; Olson J; Robles F
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34263579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherently broadened, high-repetition-rate laser for stimulated Raman scattering-spectroscopic optical coherence tomography.
    Robles FE; Linnenbank H; Mörz F; Ledwig P; Steinle T; Giessen H
    Opt Lett; 2019 Jan; 44(2):291-294. PubMed ID: 30644883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.
    Robles FE; Fischer MC; Warren WS
    Opt Express; 2016 Jan; 24(1):485-98. PubMed ID: 26832279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers.
    Fu D; Holtom G; Freudiger C; Zhang X; Xie XS
    J Phys Chem B; 2013 Apr; 117(16):4634-40. PubMed ID: 23256635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Dual-Band Hyperspectral Stimulated Raman Scattering Microscopy with Femtosecond Optical Parametric Oscillators.
    Xu FX; Rathbone EG; Fu D
    J Phys Chem B; 2023 Mar; 127(10):2187-2197. PubMed ID: 36883604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient stimulated Raman scattering spectroscopy and imaging.
    Yu Q; Yao Z; Zhou J; Yu W; Zhuang C; Qi Y; Xiong H
    Light Sci Appl; 2024 Mar; 13(1):70. PubMed ID: 38453917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy.
    Lu FK; Basu S; Igras V; Hoang MP; Ji M; Fu D; Holtom GR; Neel VA; Freudiger CW; Fisher DE; Xie XS
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11624-9. PubMed ID: 26324899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy.
    Wei M; Shi L; Shen Y; Zhao Z; Guzman A; Kaufman LJ; Wei L; Min W
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6608-6617. PubMed ID: 30872474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope.
    Laptenok SP; Rajamanickam VP; Genchi L; Monfort T; Lee Y; Patel II; Bertoncini A; Liberale C
    J Biophotonics; 2019 Sep; 12(9):e201900028. PubMed ID: 31081280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free Cytometric Evaluation of Mitosis via Stimulated Raman Scattering Microscopy and Spectral Phasor Analysis.
    Hislop EW; Tipping WJ; Faulds K; Graham D
    Anal Chem; 2023 May; 95(18):7244-7253. PubMed ID: 37097612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy.
    Shi L; Klimas A; Gallagher B; Cheng Z; Fu F; Wijesekara P; Miao Y; Ren X; Zhao Y; Min W
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200315. PubMed ID: 35521971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography.
    Oldenburg AL; Hansen MN; Ralston TS; Wei A; Boppart SA
    J Mater Chem; 2009 Jan; 19():6407. PubMed ID: 20107616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning.
    Lin H; Lee HJ; Tague N; Lugagne JB; Zong C; Deng F; Shin J; Tian L; Wong W; Dunlop MJ; Cheng JX
    Nat Commun; 2021 May; 12(1):3052. PubMed ID: 34031374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy.
    Freudiger CW; Min W; Holtom GR; Xu B; Dantus M; Xie XS
    Nat Photonics; 2011; 5(2):103-109. PubMed ID: 23015809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Range of Bioorthogonal Tags for Multiplex Stimulated Raman Scattering Microscopy.
    Murphy N; Tipping WJ; Braddick HJ; Wilson LT; Tomkinson NCO; Faulds K; Graham D; Farràs P
    Angew Chem Int Ed Engl; 2023 Nov; 62(48):e202311530. PubMed ID: 37821742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulated Raman scattering spectroscopy with quantum-enhanced balanced detection.
    Xu Z; Oguchi K; Taguchi Y; Sano Y; Miyawaki Y; Cheon D; Katoh K; Ozeki Y
    Opt Express; 2022 May; 30(11):18589-18598. PubMed ID: 36221657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy.
    Fu D; Lu FK; Zhang X; Freudiger C; Pernik DR; Holtom G; Xie XS
    J Am Chem Soc; 2012 Feb; 134(8):3623-6. PubMed ID: 22316340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time, Two-Color Stimulated Raman Scattering Imaging of Mouse Brain for Tissue Diagnosis.
    Espinoza R; Wong B; Fu D
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.