These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations. Mehta M; Holthausen MH; Mallov I; Pérez M; Qu ZW; Grimme S; Stephan DW Angew Chem Int Ed Engl; 2015 Jul; 54(28):8250-4. PubMed ID: 26032844 [TBL] [Abstract][Full Text] [Related]
6. Photolytic generation of benzhydryl cations and radicals from quaternary phosphonium salts: how highly reactive carbocations survive their first nanoseconds. Ammer J; Sailer CF; Riedle E; Mayr H J Am Chem Soc; 2012 Jul; 134(28):11481-94. PubMed ID: 22591218 [TBL] [Abstract][Full Text] [Related]
7. A model for C-F activation by electrophilic phosphonium cations. Mallov I; Johnstone TC; Burns DC; Stephan DW Chem Commun (Camb); 2017 Jul; 53(54):7529-7532. PubMed ID: 28632273 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of the first chiral bidendate bis(trifluoromethyl)phosphane ligand through stabilization of the bis(trifluoromethyl)phosphanide anion in the presence of acetone. Hoge B; Thösen C; Pantenburg I Chemistry; 2006 Dec; 12(35):9019-24. PubMed ID: 17004285 [TBL] [Abstract][Full Text] [Related]
9. Tetragonal phosphorus(v) cations as tunable and robust catalytic Lewis acids. Gilhula JC; Radosevich AT Chem Sci; 2019 Aug; 10(30):7177-7182. PubMed ID: 31588285 [TBL] [Abstract][Full Text] [Related]
10. Probing steric influences on electrophilic phosphonium cations: a comparison of [(3,5-(CF LaFortune JHW; Szkop KM; Farinha FE; Johnstone TC; Postle S; Stephan DW Dalton Trans; 2018 Aug; 47(33):11411-11419. PubMed ID: 30063062 [TBL] [Abstract][Full Text] [Related]
13. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of α-(Trifluoromethyl)styrenes and 1,3-Di(trifluoromethyl)indanes via Electrophilic Activation of TMS Ethers of (Trifluoromethyl)benzyl Alcohols in Brønsted Acids. Khoroshilova OV; Boyarskaya IA; Vasilyev AV J Org Chem; 2022 Dec; 87(23):15845-15862. PubMed ID: 36394446 [TBL] [Abstract][Full Text] [Related]
15. Catalytic Hydrodefluorination of C-F Bonds by an Air-Stable P Chitnis SS; Krischer F; Stephan DW Chemistry; 2018 May; 24(25):6543-6546. PubMed ID: 29575313 [TBL] [Abstract][Full Text] [Related]
16. A Tale of Two Elements: The Lewis Acidity/Basicity Umpolung of Boron and Phosphorus. Stephan DW Angew Chem Int Ed Engl; 2017 May; 56(22):5984-5992. PubMed ID: 28195386 [TBL] [Abstract][Full Text] [Related]
17. Lewis Superacidic Catecholato Phosphonium Ions: Phosphorus-Ligand Cooperative C-H Bond Activation. Roth D; Stirn J; Stephan DW; Greb L J Am Chem Soc; 2021 Sep; 143(38):15845-15851. PubMed ID: 34521202 [TBL] [Abstract][Full Text] [Related]
19. Ferrocenyl-derived electrophilic phosphonium cations (EPCs) as Lewis acid catalysts. Mallov I; Stephan DW Dalton Trans; 2016 Apr; 45(13):5568-74. PubMed ID: 26911641 [TBL] [Abstract][Full Text] [Related]
20. On the Redox Reactivity of a Geometrically Constrained Phosphorus(III) Compound. Robinson TP; De Rosa D; Aldridge S; Goicoechea JM Chemistry; 2017 Nov; 23(61):15455-15465. PubMed ID: 28865168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]