These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29303195)

  • 1. Temperature dependent electronic band structure of wurtzite GaAs nanowires.
    Vainorius N; Kubitza S; Lehmann S; Samuelson L; Dick KA; Pistol ME
    Nanoscale; 2018 Jan; 10(3):1481-1486. PubMed ID: 29303195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy.
    Ketterer B; Heiss M; Uccelli E; Arbiol J; i Morral AF
    ACS Nano; 2011 Sep; 5(9):7585-92. PubMed ID: 21838304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-resonant Raman scattering of wurtzite GaAs and InP nanowires.
    Vainorius N; Lehmann S; Dick KA; Pistol ME
    Opt Express; 2020 Apr; 28(8):11016-11022. PubMed ID: 32403621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional magneto-photoluminescence as a probe of the electronic properties of crystal-phase quantum disks in GaAs nanowires.
    Corfdir P; Van Hattem B; Uccelli E; Conesa-Boj S; Lefebvre P; Fontcuberta i Morral A; Phillips RT
    Nano Lett; 2013 Nov; 13(11):5303-10. PubMed ID: 24134509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A story told by a single nanowire: optical properties of wurtzite GaAs.
    Ahtapodov L; Todorovic J; Olk P; Mjåland T; Slåttnes P; Dheeraj DL; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2012 Dec; 12(12):6090-5. PubMed ID: 23131181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal phase induced bandgap modifications in AlAs nanowires probed by resonant Raman spectroscopy.
    Funk S; Li A; Ercolani D; Gemmi M; Sorba L; Zardo I
    ACS Nano; 2013 Feb; 7(2):1400-7. PubMed ID: 23281738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires.
    Yuan X; Li L; Li Z; Wang F; Wang N; Fu L; He J; Tan HH; Jagadish C
    Nanoscale; 2019 May; 11(18):9207-9215. PubMed ID: 31038526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure.
    Zhou W; Chen XJ; Zhang JB; Li XH; Wang YQ; Goncharov AF
    Sci Rep; 2014 Sep; 4():6472. PubMed ID: 25253566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination.
    Choi SB; Song MS; Kim Y
    Nanotechnology; 2018 Apr; 29(14):145702. PubMed ID: 29376840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling Variations in Electronic and Atomic Structures Due to Nanoscale Wurtzite and Zinc Blende Phase Separation in GaAs Nanowires.
    Zeng L; Olsson E
    Nano Lett; 2024 Jun; 24(22):6644-6650. PubMed ID: 38767455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires.
    Rosini M; Magri R
    ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polytypism in GaAs nanowires: determination of the interplanar spacing of wurtzite GaAs by X-ray diffraction.
    Köhl M; Schroth P; Minkevich AA; Hornung JW; Dimakis E; Somaschini C; Geelhaar L; Aschenbrenner T; Lazarev S; Grigoriev D; Pietsch U; Baumbach T
    J Synchrotron Radiat; 2015 Jan; 22(1):67-75. PubMed ID: 25537590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Illuminating the second conduction band and spin-orbit energy in single wurtzite InP nanowires.
    Perera S; Shi T; Fickenscher MA; Jackson HE; Smith LM; Yarrison-Rice JM; Paiman S; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2013; 13(11):5367-72. PubMed ID: 24134708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band Structure of Wurtzite GaBiAs Nanowires.
    Zhang B; Huang Y; Stehr JE; Chen PP; Wang XJ; Lu W; Chen WM; Buyanova IA
    Nano Lett; 2019 Sep; 19(9):6454-6460. PubMed ID: 31424943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wurtzite ZnTe Nanotrees and Nanowires on Fluorine-Doped Tin Oxide Glass Substrates.
    Song MS; Choi SB; Kim Y
    Nano Lett; 2017 Jul; 17(7):4365-4372. PubMed ID: 28654296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires.
    Panda JK; Chakraborty A; Ercolani D; Gemmi M; Sorba L; Roy A
    Nanotechnology; 2016 Oct; 27(41):415201. PubMed ID: 27586817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure tuning of the optical properties of GaAs nanowires.
    Zardo I; Yazji S; Marini C; Uccelli E; Fontcuberta i Morral A; Abstreiter G; Postorino P
    ACS Nano; 2012 Apr; 6(4):3284-91. PubMed ID: 22443867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces.
    Hjort M; Lehmann S; Knutsson J; Timm R; Jacobsson D; Lundgren E; Dick KA; Mikkelsen A
    Nano Lett; 2013 Sep; 13(9):4492-8. PubMed ID: 23941328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires.
    Li D; Wang Z; Gao F
    Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valence band splitting in wurtzite InGaAs nanoneedles studied by photoluminescence excitation spectroscopy.
    Wang X; Zardo I; Spirkoska D; Yazji S; Ng KW; Ko WS; Chang-Hasnain CJ; Finley JJ; Abstreiter G
    ACS Nano; 2014 Nov; 8(11):11440-6. PubMed ID: 25363377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.