These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29303195)

  • 41. Direct Band Gap AlGaAs Wurtzite Nanowires.
    Barettin D; Shtrom IV; Reznik RR; Mikushev SV; Cirlin GE; Auf der Maur M; Akopian N
    Nano Lett; 2023 Feb; 23(3):895-901. PubMed ID: 36649590
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation.
    Vainorius N; Lehmann S; Gustafsson A; Samuelson L; Dick KA; Pistol ME
    Nano Lett; 2016 Apr; 16(4):2774-80. PubMed ID: 27004550
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal phase control in GaAs nanowires: opposing trends in the Ga- and As-limited growth regimes.
    Lehmann S; Jacobsson D; Dick KA
    Nanotechnology; 2015 Jul; 26(30):301001. PubMed ID: 26160888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires.
    Timofeeva M; Bouravleuv A; Cirlin G; Shtrom I; Soshnikov I; Reig Escalé M; Sergeyev A; Grange R
    Nano Lett; 2016 Oct; 16(10):6290-6297. PubMed ID: 27657488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
    Shapiro JN; Lin A; Ratsch C; Huffaker DL
    Nanotechnology; 2013 Nov; 24(47):475601. PubMed ID: 24192402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires.
    Wallentin J; Mergenthaler K; Ek M; Wallenberg LR; Samuelson L; Deppert K; Pistol ME; Borgström MT
    Nano Lett; 2011 Jun; 11(6):2286-90. PubMed ID: 21604708
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and raman scattering from Zn(1-x)Mn(x)S diluted magnetic semiconductor nanowires.
    Wu J; Gutierrez HR; Eklund PC
    J Nanosci Nanotechnol; 2008 Jan; 8(1):393-9. PubMed ID: 18468089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature dependence Raman spectroscopy and DFT calculations of Bi
    Saraiva GD; da Silva Filho JG; Saraiva-Souza A; de Castro AJR; Teixeira AMR; Luz-Lima C; Oliveira FGS; Neto VOS; Freire PTC; de Sousa FF
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117340. PubMed ID: 31330420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Why does wurtzite form in nanowires of III-V zinc blende semiconductors?
    Glas F; Harmand JC; Patriarche G
    Phys Rev Lett; 2007 Oct; 99(14):146101. PubMed ID: 17930689
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide.
    Liao G; Luo N; Chen KQ; Xu HQ
    Sci Rep; 2016 Jun; 6():28240. PubMed ID: 27307081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.
    Mante PA; Lehmann S; Anttu N; Dick KA; Yartsev A
    Nano Lett; 2016 Aug; 16(8):4792-8. PubMed ID: 27352041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking.
    Arbiol J; Estradé S; Prades JD; Cirera A; Furtmayr F; Stark C; Laufer A; Stutzmann M; Eickhoff M; Gass MH; Bleloch AL; Peiró F; Morante JR
    Nanotechnology; 2009 Apr; 20(14):145704. PubMed ID: 19420534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Closing the bandgap for III-V nitrides toward mid-infrared and THz applications.
    Lu P; Liang D; Chen Y; Zhang C; Quhe R; Wang S
    Sci Rep; 2017 Sep; 7(1):10594. PubMed ID: 28878271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-catalyzed MBE grown GaAs/GaAs(x)Sb(1-x) core-shell nanowires in ZB and WZ crystal structures.
    Ghalamestani SG; Munshi AM; Dheeraj DL; Fimland BO; Weman H; Dick KA
    Nanotechnology; 2013 Oct; 24(40):405601. PubMed ID: 24028926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An ab initio approach on the asymmetric stacking of GaAs 〈111〉 nanowires grown by a vapor-solid method.
    Yeu IW; Han G; Hwang CS; Choi JH
    Nanoscale; 2020 Sep; 12(34):17703-17714. PubMed ID: 32608427
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.
    Zhou HL; Hoang TB; Dheeraj DL; van Helvoort AT; Liu L; Harmand JC; Fimland BO; Weman H
    Nanotechnology; 2009 Oct; 20(41):415701. PubMed ID: 19755725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and Si
    de Matteis D; De Luca M; Fadaly EMT; Verheijen MA; López-Suárez M; Rurali R; Bakkers EPAM; Zardo I
    ACS Nano; 2020 Jun; 14(6):6845-6856. PubMed ID: 32392038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unraveling electronic band structure of narrow-bandgap p-n nanojunctions in heterostructured nanowires.
    Zamani RR; Hage FS; Eljarrat A; Namazi L; Ramasse QM; Dick KA
    Phys Chem Chem Phys; 2021 Nov; 23(44):25019-25023. PubMed ID: 34730587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.