These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29303326)

  • 1. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock.
    Brown RC; Phillips NB; Beloy K; McGrew WF; Schioppo M; Fasano RJ; Milani G; Zhang X; Hinkley N; Leopardi H; Yoon TH; Nicolodi D; Fortier TM; Ludlow AD
    Phys Rev Lett; 2017 Dec; 119(25):253001. PubMed ID: 29303326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty Evaluation of an
    Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10(-17) level.
    Westergaard PG; Lodewyck J; Lorini L; Lecallier A; Burt EA; Zawada M; Millo J; Lemonde P
    Phys Rev Lett; 2011 May; 106(21):210801. PubMed ID: 21699284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operational Magic Intensity for Sr Optical Lattice Clocks.
    Ushijima I; Takamoto M; Katori H
    Phys Rev Lett; 2018 Dec; 121(26):263202. PubMed ID: 30636149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarizability effects in a Sr optical lattice clock.
    Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P
    Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts.
    Golovizin AA; Tregubov DO; Fedorova ES; Mishin DA; Provorchenko DI; Khabarova KY; Sorokin VN; Kolachevsky NN
    Nat Commun; 2021 Aug; 12(1):5171. PubMed ID: 34453046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects for optical clocks with a blue-detuned lattice.
    Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock.
    Porsev SG; Safronova MS; Safronova UI; Kozlov MG
    Phys Rev Lett; 2018 Feb; 120(6):063204. PubMed ID: 29481257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magic wavelength to make optical lattice clocks insensitive to atomic motion.
    Katori H; Hashiguchi K; Il'inova EY; Ovsiannikov VD
    Phys Rev Lett; 2009 Oct; 103(15):153004. PubMed ID: 19905634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of collisional shifts in a strongly interacting lattice clock.
    Swallows MD; Bishof M; Lin Y; Blatt S; Martin MJ; Rey AM; Ye J
    Science; 2011 Feb; 331(6020):1043-6. PubMed ID: 21292940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms.
    Hong T; Cramer C; Nagourney W; Fortson EN
    Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoionization cross sections of ultracold
    Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M
    Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin waves and collisional frequency shifts of a trapped-atom clock.
    Maineult W; Deutsch C; Gibble K; Reichel J; Rosenbusch P
    Phys Rev Lett; 2012 Jul; 109(2):020407. PubMed ID: 23030137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic study of the 87Srclock transition in an optical lattice.
    Ludlow AD; Boyd MM; Zelevinsky T; Foreman SM; Blatt S; Notcutt M; Ido T; Ye J
    Phys Rev Lett; 2006 Jan; 96(3):033003. PubMed ID: 16486696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.