These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions. Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267 [TBL] [Abstract][Full Text] [Related]
9. Hyperpolarizability effects in a Sr optical lattice clock. Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts. Golovizin AA; Tregubov DO; Fedorova ES; Mishin DA; Provorchenko DI; Khabarova KY; Sorokin VN; Kolachevsky NN Nat Commun; 2021 Aug; 12(1):5171. PubMed ID: 34453046 [TBL] [Abstract][Full Text] [Related]
11. Prospects for optical clocks with a blue-detuned lattice. Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584 [TBL] [Abstract][Full Text] [Related]
12. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514 [TBL] [Abstract][Full Text] [Related]
13. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock. Porsev SG; Safronova MS; Safronova UI; Kozlov MG Phys Rev Lett; 2018 Feb; 120(6):063204. PubMed ID: 29481257 [TBL] [Abstract][Full Text] [Related]
15. Suppression of collisional shifts in a strongly interacting lattice clock. Swallows MD; Bishof M; Lin Y; Blatt S; Martin MJ; Rey AM; Ye J Science; 2011 Feb; 331(6020):1043-6. PubMed ID: 21292940 [TBL] [Abstract][Full Text] [Related]
16. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms. Hong T; Cramer C; Nagourney W; Fortson EN Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624 [TBL] [Abstract][Full Text] [Related]
17. Photoionization cross sections of ultracold Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862 [TBL] [Abstract][Full Text] [Related]
18. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock. Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849 [TBL] [Abstract][Full Text] [Related]
19. Spin waves and collisional frequency shifts of a trapped-atom clock. Maineult W; Deutsch C; Gibble K; Reichel J; Rosenbusch P Phys Rev Lett; 2012 Jul; 109(2):020407. PubMed ID: 23030137 [TBL] [Abstract][Full Text] [Related]
20. Systematic study of the 87Srclock transition in an optical lattice. Ludlow AD; Boyd MM; Zelevinsky T; Foreman SM; Blatt S; Notcutt M; Ido T; Ye J Phys Rev Lett; 2006 Jan; 96(3):033003. PubMed ID: 16486696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]