These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 29303570)
1. Diffusive Gradients in Thin Films Reveals Differences in Antimony and Arsenic Mobility in a Contaminated Wetland Sediment during an Oxic-Anoxic Transition. Arsic M; Teasdale PR; Welsh DT; Johnston SG; Burton ED; Hockmann K; Bennett WW Environ Sci Technol; 2018 Feb; 52(3):1118-1127. PubMed ID: 29303570 [TBL] [Abstract][Full Text] [Related]
2. Investigating arsenic speciation and mobilization in sediments with DGT and DET: a mesocosm evaluation of oxic-anoxic transitions. Bennett WW; Teasdale PR; Panther JG; Welsh DT; Zhao H; Jolley DF Environ Sci Technol; 2012 Apr; 46(7):3981-9. PubMed ID: 22397626 [TBL] [Abstract][Full Text] [Related]
3. Study on antimony mobility in a contaminated shallow lake sediment using the diffusive gradients in thin films technique. Yao C; Che F; Jiang X; Wu Z; Chen J; Wang K Chemosphere; 2021 Mar; 267():128913. PubMed ID: 33246702 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the mobility and labile of As and Sb using diffusive gradients in thin-films (DGT) in the sediments of Nansi Lake, China. Ma X; Li C; Yang L; Ding S; Zhang M; Zhang Y; Zhao T Sci Total Environ; 2020 Apr; 713():136569. PubMed ID: 31955086 [TBL] [Abstract][Full Text] [Related]
5. In situ speciation of dissolved inorganic antimony in surface waters and sediment porewaters: development of a thiol-based diffusive gradients in thin films technique for Sb(III). Bennett WW; Arsic M; Welsh DT; Teasdale PR Environ Sci Process Impacts; 2016 Aug; 18(8):992-8. PubMed ID: 27192548 [TBL] [Abstract][Full Text] [Related]
6. Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation. Ren M; Ding S; Fu Z; Yang L; Tang W; Tsang DCW; Wang D; Wang Y J Hazard Mater; 2019 Apr; 367():427-436. PubMed ID: 30611035 [TBL] [Abstract][Full Text] [Related]
7. Assessing the remobilization of Antimony in sediments by DGT: A case study in a tributary of the Three Gorges Reservoir. Gao L; Gao B; Zhou H; Xu D; Wang Q; Yin S Environ Pollut; 2016 Jul; 214():600-607. PubMed ID: 27131820 [TBL] [Abstract][Full Text] [Related]
8. Effects of elevated sulfate in eutrophic waters on the internal phosphate release under oxic conditions across the sediment-water interface. Chen J; Zhang H; Liu L; Zhang J; Cooper M; Mortimer RJG; Pan G Sci Total Environ; 2021 Oct; 790():148010. PubMed ID: 34111791 [TBL] [Abstract][Full Text] [Related]
9. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
10. Seasonal mobility of antimony in sediment-water systems in algae- and macrophyte-dominated zones of Lake Taihu (China). Ren M; Wang D; Ding S; Yang L; Xu S; Yang C; Wang Y; Zhang C Chemosphere; 2019 May; 223():108-116. PubMed ID: 30772589 [TBL] [Abstract][Full Text] [Related]
11. Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes. Chen YW; Deng TL; Filella M; Belzile N Environ Sci Technol; 2003 Mar; 37(6):1163-8. PubMed ID: 12680670 [TBL] [Abstract][Full Text] [Related]
12. Comparing in situ colorimetric DET and DGT techniques with ex situ core slicing and centrifugation for measuring ferrous iron and dissolved sulfide in coastal sediment pore waters. Rathnayake Kankanamge N; Bennett WW; Teasdale PR; Huang J; Welsh DT Chemosphere; 2017 Dec; 188():119-129. PubMed ID: 28881239 [TBL] [Abstract][Full Text] [Related]
13. Metal fluxes at the sediment-water interface in a free water surface constructed wetland. Xu X; Baddar ZE Environ Monit Assess; 2022 Jul; 194(8):571. PubMed ID: 35796892 [TBL] [Abstract][Full Text] [Related]
14. Influence of algal blooms decay on arsenic dynamics at the sediment-water interface of a shallow lake. Zeng L; Yan C; Guo J; Zhen Z; Zhao Y; Wang D Chemosphere; 2019 Mar; 219():1014-1023. PubMed ID: 30682758 [TBL] [Abstract][Full Text] [Related]
15. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. Johnston SG; Bennett WW; Doriean N; Hockmann K; Karimian N; Burton ED Sci Total Environ; 2020 Mar; 710():136354. PubMed ID: 32050372 [TBL] [Abstract][Full Text] [Related]
16. Arsenic mobilization across the sediment-water interface of the Three Gorges Reservoir as a function of water depth using DGT and HR-Peepers, a preliminary study. Ma Y; Yang C; Liu Z; Han C; Qin Y Ecotoxicol Environ Saf; 2024 May; 276():116276. PubMed ID: 38579533 [TBL] [Abstract][Full Text] [Related]
17. Depositional influences on porewater arsenic in sediments of a mining-contaminated freshwater lake. Toevs G; Morra MJ; Winowiecki L; Strawn D; Polizzotto ML; Fendorf S Environ Sci Technol; 2008 Sep; 42(18):6823-9. PubMed ID: 18853795 [TBL] [Abstract][Full Text] [Related]
18. Integrated effects of bioturbation, warming and sea-level rise on mobility of sulfide and metalloids in sediment porewater of mangrove wetlands. Pan F; Xiao K; Cai Y; Li H; Guo Z; Wang X; Zheng Y; Zheng C; Bostick BC; Michael HA Water Res; 2023 Apr; 233():119788. PubMed ID: 36863280 [TBL] [Abstract][Full Text] [Related]
19. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland. Warnken J; Ohlsson R; Welsh DT; Teasdale PR; Chelsky A; Bennett WW Chemosphere; 2017 Aug; 180():388-395. PubMed ID: 28419952 [TBL] [Abstract][Full Text] [Related]
20. In-situ characterization and assessment of arsenic mobility in lake sediments. Sun Q; Ding S; Wang Y; Xu L; Wang D; Chen J; Zhang C Environ Pollut; 2016 Jul; 214():314-323. PubMed ID: 27107255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]