These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29304020)

  • 1. Study of the Weathering Process of Gasoline by eNose.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Palma M; Barroso CG
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Electronic Nose Based Method for the Discrimination of Weathered Petroleum-Derived Products.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose.
    Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemometric classification of casework arson samples based on gasoline content.
    Sinkov NA; Sandercock PM; Harynuk JJ
    Forensic Sci Int; 2014 Feb; 235():24-31. PubMed ID: 24447448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the effects of weathering and microbial degradation on gasoline using principal components analysis.
    Turner DA; Goodpaster JV
    J Forensic Sci; 2012 Jan; 57(1):64-9. PubMed ID: 22150510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Likelihood ratio methods for forensic comparison of evaporated gasoline residues.
    Vergeer P; Bolck A; Peschier LJ; Berger CE; Hendrikse JN
    Sci Justice; 2014 Dec; 54(6):401-11. PubMed ID: 25498926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry.
    Schwartz Z; An Y; Konstantynova KI; Jackson GP
    Forensic Sci Int; 2013 Dec; 233(1-3):365-73. PubMed ID: 24314542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science.
    de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN
    Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes.
    Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M
    Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures.
    Baerncopf JM; McGuffin VL; Smith RW
    J Forensic Sci; 2011 Jan; 56(1):70-81. PubMed ID: 20854360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Study of the Alteration of Ignitable Liquids by Weathering and Microbial Degradation.
    Turner DA; Williams M; Sigman MA; Goodpaster JV
    J Forensic Sci; 2018 Jan; 63(1):58-65. PubMed ID: 28464314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate interferences in identifying flammable liquids in food, environmental and biological samples: case studies.
    Borusiewicz R
    Sci Justice; 2015 May; 55(3):176-80. PubMed ID: 25934369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical tools for the analysis of fire debris. A review: 2008-2015.
    Martín-Alberca C; Ortega-Ojeda FE; García-Ruiz C
    Anal Chim Acta; 2016 Jul; 928():1-19. PubMed ID: 27251852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.
    Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C
    J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.