BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29304182)

  • 1. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.
    Gonçalves-Araujo R; Rabe B; Peeken I; Bracher A
    PLoS One; 2018; 13(1):e0190838. PubMed ID: 29304182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tuned ocean color algorithm for the Arctic Ocean: a solution for waters with high CDM content.
    Li J; Matsuoka A; Hooker SB; Maritorena S; Pang X; Babin M
    Opt Express; 2023 Nov; 31(23):38494-38512. PubMed ID: 38017954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.
    Dierssen HM
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean.
    Aurin D; Mannino A; Lary DJ
    Appl Sci (Basel); 2018; 8(12):2687. PubMed ID: 31032080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First autonomous bio-optical profiling float in the Gulf of Mexico reveals dynamic biogeochemistry in deep waters.
    Green RE; Bower AS; Lugo-Fernández A
    PLoS One; 2014; 9(7):e101658. PubMed ID: 24992646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning.
    Kolluru S; Tiwari SP
    Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote-sensing monitoring of colored dissolved organic matter in the Arctic Ocean.
    Huang J; Chen J; Mu Y; Cao C; Shen H
    Mar Pollut Bull; 2024 Jul; 204():116529. PubMed ID: 38824705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Phytoplankton Shapes Colored Dissolved Organic Matter Dynamics in the North Atlantic Subtropical Gyre.
    Organelli E; Claustre H
    Geophys Res Lett; 2019 Nov; 46(21):12183-12191. PubMed ID: 31875863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties.
    Lyon PE; Hoge FE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2004 Nov; 43(31):5886-92. PubMed ID: 15540447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front.
    D'Sa EJ; Miller RL; Del Castillo C
    Appl Opt; 2006 Oct; 45(28):7410-28. PubMed ID: 16983431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.
    Lin J; Cao W; Wang G; Hu S
    Appl Opt; 2013 Jun; 52(18):4249-57. PubMed ID: 23842167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The global distribution and dynamics of chromophoric dissolved organic matter.
    Nelson NB; Siegel DA
    Ann Rev Mar Sci; 2013; 5():447-76. PubMed ID: 22809178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter.
    Krumpen T; Belter HJ; Boetius A; Damm E; Haas C; Hendricks S; Nicolaus M; Nöthig EM; Paul S; Peeken I; Ricker R; Stein R
    Sci Rep; 2019 Apr; 9(1):5459. PubMed ID: 30940829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High latitude Southern Ocean phytoplankton have distinctive bio-optical properties.
    Robinson CM; Huot Y; Schuback N; Ryan-Keogh TJ; Thomalla SJ; Antoine D
    Opt Express; 2021 Jul; 29(14):21084-21112. PubMed ID: 34265904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Optical characteristics of colored dissolved organic material (CDOM) in Yangtze Estuary].
    Zhu WJ; Shen F; Hong GL
    Huan Jing Ke Xue; 2010 Oct; 31(10):2292-8. PubMed ID: 21229734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean.
    Bouman HA; Jackson T; Sathyendranath S; Platt T
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190351. PubMed ID: 32862808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean.
    Kahru M; Lee Z; Mitchell BG; Nevison CD
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of chromophoric dissolved organic matter and its controlling factors in Beaufort Sea using mixture density network and Sentinel-3 data.
    Huang J; Chen J; Wu M; Gong L; Zhang X
    Sci Total Environ; 2022 Nov; 849():157677. PubMed ID: 35926633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.