These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29304550)

  • 41. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bending elasticity of vesicle membranes studied by Monte Carlo simulations of vesicle thermal shape fluctuations.
    Penič S; Iglič A; Bivas I; Fošnarič M
    Soft Matter; 2015 Jul; 11(25):5004-9. PubMed ID: 25909915
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of hydrophobic mismatch on phase behavior of lipid membranes.
    Wallace EJ; Hooper NM; Olmsted PD
    Biophys J; 2006 Jun; 90(11):4104-18. PubMed ID: 16533859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energetic contribution to hydration shells in one-dimensional aqueous electrolyte solution by anomalous hydrogen bonds.
    Ohba T; Kanoh H
    Phys Chem Chem Phys; 2013 Apr; 15(15):5658-63. PubMed ID: 23474972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Models of electrolyte solutions from molecular descriptions: the example of NaCl solutions.
    Molina JJ; Dufrêche JF; Salanne M; Bernard O; Jardat M; Turq P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065103. PubMed ID: 20365215
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluidity modulation of phospholipid bilayers by electrolyte ions: insights from fluorescence microscopy and microslit electrokinetic experiments.
    Zimmermann R; Küttner D; Renner L; Kaufmann M; Werner C
    J Phys Chem A; 2012 Jun; 116(25):6519-25. PubMed ID: 22304400
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations.
    Moučka F; Nezbeda I; Smith WR
    J Chem Phys; 2013 Apr; 138(15):154102. PubMed ID: 23614407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores.
    Hou CH; Taboada-Serrano P; Yiacoumi S; Tsouris C
    J Chem Phys; 2008 Dec; 129(22):224703. PubMed ID: 19071935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction between random heterogeneously charged surfaces in an electrolyte solution.
    Bakhshandeh A; dos Santos AP; Diehl A; Levin Y
    J Chem Phys; 2015 May; 142(19):194707. PubMed ID: 26001473
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of salt identity on the phase diagram for a globular protein in aqueous electrolyte solution.
    Boström M; Tavares FW; Ninham BW; Prausnitz JM
    J Phys Chem B; 2006 Dec; 110(48):24757-60. PubMed ID: 17134240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall.
    Warshavsky V; Marucho M
    Phys Rev E; 2016 Apr; 93():042607. PubMed ID: 27176352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrical conductance of hydrophobic membranes or what happens below the surface.
    Vlassiouk I; Rios F; Vail SA; Gust D; Smirnov S
    Langmuir; 2007 Jul; 23(14):7784-92. PubMed ID: 17542624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.
    Hackemann E; Hasse H
    J Chromatogr A; 2017 Oct; 1521():73-79. PubMed ID: 28947205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of peptide solutions: a light scattering and numerical study.
    Egelhaaf SU; Lobaskin V; Bauer HH; Merkle HP; Schurtenberger P
    Eur Phys J E Soft Matter; 2004 Feb; 13(2):153-64. PubMed ID: 15052425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrolytes in a nanometer slab-confinement: ion-specific structure and solvation forces.
    Kalcher I; Schulz JC; Dzubiella J
    J Chem Phys; 2010 Oct; 133(16):164511. PubMed ID: 21033809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A computational study of electrolyte adsorption in a simple model for intercalated clays.
    Lomba E; Weis JJ
    J Chem Phys; 2010 Mar; 132(10):104705. PubMed ID: 20232982
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms.
    Malasics A; Gillespie D; Boda D
    J Chem Phys; 2008 Mar; 128(12):124102. PubMed ID: 18376903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.