These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2930472)

  • 41. Oxidative metabolism of 1-nitropyrene by rabbit liver microsomes and purified microsomal cytochrome P-450 isozymes.
    Howard PC; Reed KA; Koop DR
    Cancer Res; 1988 Aug; 48(15):4261-5. PubMed ID: 3390822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phospholipid requirement for dimethylnitrosamine demethylation by hamster hepatic microsomal cytochrome P-450 enzyme system.
    Lotlikar PD; Baldy WJ; Nyce J; Dwyer EN
    Biochem J; 1976 Nov; 160(2):401-4. PubMed ID: 1008863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition and induction of rabbit liver microsomal cytochrome P-450 by pyridine.
    Kaul KL; Novak RF
    J Pharmacol Exp Ther; 1987 Oct; 243(1):384-90. PubMed ID: 3668864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of age and sex on allyl alcohol hepatotoxicity in rats: role of liver alcohol and aldehyde dehydrogenase activities.
    Rikans LE; Moore DR
    J Pharmacol Exp Ther; 1987 Oct; 243(1):20-6. PubMed ID: 3668850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro metabolism of terfenadine by a purified recombinant fusion protein containing cytochrome P4503A4 and NADPH-P450 reductase. Comparison to human liver microsomes and precision-cut liver tissue slices.
    Rodrigues AD; Mulford DJ; Lee RD; Surber BW; Kukulka MJ; Ferrero JL; Thomas SB; Shet MS; Estabrook RW
    Drug Metab Dispos; 1995 Jul; 23(7):765-75. PubMed ID: 7587966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo disposition of caffeine predicted from hepatic microsomal and hepatocyte data.
    Hayes KA; Brennan B; Chenery R; Houston JB
    Drug Metab Dispos; 1995 Mar; 23(3):349-53. PubMed ID: 7628300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolism of cyclosporin A. III. Interaction of the macrolide antibiotic, erythromycin, using rabbit hepatocytes and microsomal fractions.
    Fabre I; Fabre G; Maurel P; Bertault-Peres P; Cano JP
    Drug Metab Dispos; 1988; 16(2):296-301. PubMed ID: 2898350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of N-nitroso-2,6-dimethylmorpholine by isozymes of rabbit liver microsomal cytochrome P-450.
    Kokkinakis DM; Koop DR; Scarpelli DG; Coon MJ; Hollenberg PF
    Cancer Res; 1985 Feb; 45(2):619-24. PubMed ID: 3967237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro metabolism of tirilazad mesylate in male and female rats. Contribution of cytochrome P4502C11 and delta 4-5 alpha-reductase.
    Wienkers LC; Steenwyk RC; Mizsak SA; Pearson PG
    Drug Metab Dispos; 1995 Mar; 23(3):383-92. PubMed ID: 7628305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations.
    Lasker JM; Wester MR; Aramsombatdee E; Raucy JL
    Arch Biochem Biophys; 1998 May; 353(1):16-28. PubMed ID: 9578596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolism of 3-butene-1,2-diol in B6C3F1 mice. Evidence for involvement of alcohol dehydrogenase and cytochrome p450.
    Kemper RA; Elfarra AA; Myers SR
    Drug Metab Dispos; 1998 Sep; 26(9):914-20. PubMed ID: 9733671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of P450IIE1 in the metabolism of 3-hydroxypyridine, a constituent of tobacco smoke: redox cycling and DNA strand scission by the metabolite 2,5-dihydroxypyridine.
    Kim SG; Novak RF
    Cancer Res; 1990 Sep; 50(17):5333-9. PubMed ID: 2167153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ethanol Metabolism in the Liver, the Induction of Oxidant Stress, and the Antioxidant Defense System.
    Contreras-Zentella ML; Villalobos-García D; Hernández-Muñoz R
    Antioxidants (Basel); 2022 Jun; 11(7):. PubMed ID: 35883749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ethanol metabolism in alcohol dehydrogenase deficient deermice is mediated by the microsomal ethanol oxidizing system, not by catalase.
    Kato S; Alderman J; Lieber CS
    Alcohol Alcohol Suppl; 1987; 1():231-4. PubMed ID: 3426685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidoreduction of butanol in deermice (Peromyscus maniculatus) lacking hepatic cytosolic alcohol dehydrogenase.
    Cronholm T; Norsten-Höög C; Ekström G; Handler JA; Thurman RG; Ingelman-Sundberg M
    Eur J Biochem; 1992 Feb; 204(1):353-7. PubMed ID: 1740147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The microsomal ethanol oxidizing system mediates metabolic tolerance to ethanol in deermice lacking alcohol dehydrogenase.
    Alderman J; Kato S; Lieber CS
    Arch Biochem Biophys; 1989 May; 271(1):33-9. PubMed ID: 2712574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characteristics of butanol metabolism in alcohol dehydrogenase-deficient deermice.
    Alderman JA; Kato S; Lieber CS
    Biochem J; 1989 Jan; 257(2):615-7. PubMed ID: 2930472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of catalase-dependent ethanol metabolism in alcohol dehydrogenase-deficient deermice by fructose.
    Handler JA; Bradford BU; Glassman EB; Forman DT; Thurman RG
    Biochem J; 1987 Dec; 248(2):415-21. PubMed ID: 3435455
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.