These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. Irla M; Neshat A; Brautaset T; Rückert C; Kalinowski J; Wendisch VF BMC Genomics; 2015 Feb; 16(1):73. PubMed ID: 25758049 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. Pfeifer-Sancar K; Mentz A; Rückert C; Kalinowski J BMC Genomics; 2013 Dec; 14():888. PubMed ID: 24341750 [TBL] [Abstract][Full Text] [Related]
4. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads. Kranz A; Vogel A; Degner U; Kiefler I; Bott M; Usadel B; Polen T J Biotechnol; 2017 Sep; 258():197-205. PubMed ID: 28433722 [TBL] [Abstract][Full Text] [Related]
5. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Hölscher T; Görisch H J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032 [TBL] [Abstract][Full Text] [Related]
6. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H. Kranz A; Steinmann A; Degner U; Mengus-Kaya A; Matamouros S; Bott M; Polen T BMC Genomics; 2018 Oct; 19(1):753. PubMed ID: 30326828 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. Wittchen M; Busche T; Gaspar AH; Lee JH; Ton-That H; Kalinowski J; Tauch A BMC Genomics; 2018 Jan; 19(1):82. PubMed ID: 29370758 [TBL] [Abstract][Full Text] [Related]
8. Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Mientus M; Kostner D; Peters B; Liebl W; Ehrenreich A Appl Microbiol Biotechnol; 2017 Apr; 101(8):3189-3200. PubMed ID: 28064365 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. Albersmeier A; Pfeifer-Sancar K; Rückert C; Kalinowski J J Biotechnol; 2017 Sep; 257():99-109. PubMed ID: 28412515 [TBL] [Abstract][Full Text] [Related]
10. Genome-scale reconstruction of a metabolic network for Gluconobacter oxydans 621H. Wu X; Wang X; Lu W Biosystems; 2014 Mar; 117():10-4. PubMed ID: 24418346 [TBL] [Abstract][Full Text] [Related]
11. FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium Schweikert S; Kranz A; Yakushi T; Filipchyk A; Polen T; Etterich H; Bringer S; Bott M Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741613 [TBL] [Abstract][Full Text] [Related]
12. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. Alkhateeb RS; Vorhölter FJ; Rückert C; Mentz A; Wibberg D; Hublik G; Niehaus K; Pühler A J Biotechnol; 2016 May; 225():18-28. PubMed ID: 26975844 [TBL] [Abstract][Full Text] [Related]
13. Influence of oxygen limitation, absence of the cytochrome bc(1) complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. Hanke T; Richhardt J; Polen T; Sahm H; Bringer S; Bott M J Biotechnol; 2012 Feb; 157(3):359-72. PubMed ID: 22226911 [TBL] [Abstract][Full Text] [Related]
14. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Prust C; Hoffmeister M; Liesegang H; Wiezer A; Fricke WF; Ehrenreich A; Gottschalk G; Deppenmeier U Nat Biotechnol; 2005 Feb; 23(2):195-200. PubMed ID: 15665824 [TBL] [Abstract][Full Text] [Related]
15. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans. Fricke PM; Link T; Gätgens J; Sonntag C; Otto M; Bott M; Polen T Appl Microbiol Biotechnol; 2020 Nov; 104(21):9267-9282. PubMed ID: 32974745 [TBL] [Abstract][Full Text] [Related]
16. Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis. Wei L; Zhu D; Zhou J; Zhang J; Zhu K; Du L; Hua Q Microbiol Res; 2014; 169(5-6):469-75. PubMed ID: 24035043 [TBL] [Abstract][Full Text] [Related]
17. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle. Kiefler I; Bringer S; Bott M Appl Microbiol Biotechnol; 2015 Nov; 99(21):9147-60. PubMed ID: 26399411 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq). Babski J; Haas KA; Näther-Schindler D; Pfeiffer F; Förstner KU; Hammelmann M; Hilker R; Becker A; Sharma CM; Marchfelder A; Soppa J BMC Genomics; 2016 Aug; 17(1):629. PubMed ID: 27519343 [TBL] [Abstract][Full Text] [Related]
19. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. Hu Y; Wan H; Li J; Zhou J J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1039-47. PubMed ID: 25952118 [TBL] [Abstract][Full Text] [Related]
20. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens. Prados J; Linder P; Redder P BMC Genomics; 2016 Nov; 17(1):849. PubMed ID: 27806702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]