These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29305004)

  • 1. Translational Control of the Myogenic Program in Developing, Regenerating, and Diseased Skeletal Muscle.
    Fujita R; Crist C
    Curr Top Dev Biol; 2018; 126():67-98. PubMed ID: 29305004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis.
    Koning M; Werker PM; van Luyn MJ; Krenning G; Harmsen MC
    Differentiation; 2012 Nov; 84(4):314-21. PubMed ID: 23023067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases.
    Li Y; Chen X; Sun H; Wang H
    Cancer Lett; 2018 Mar; 417():58-64. PubMed ID: 29253523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis.
    Zammit PS
    Semin Cell Dev Biol; 2017 Dec; 72():19-32. PubMed ID: 29127046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragile X mental retardation protein regulates skeletal muscle stem cell activity by regulating the stability of Myf5 mRNA.
    Fujita R; Zismanov V; Jacob JM; Jamet S; Asiev K; Crist C
    Skelet Muscle; 2017 Sep; 7(1):18. PubMed ID: 28882193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPARγ Controls Ectopic Adipogenesis and Cross-Talks with Myogenesis During Skeletal Muscle Regeneration.
    Dammone G; Karaz S; Lukjanenko L; Winkler C; Sizzano F; Jacot G; Migliavacca E; Palini A; Desvergne B; Gilardi F; Feige JN
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30011852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Navigating translational control of gene expression in satellite cells.
    Jiogo H; Crist C
    Curr Top Dev Biol; 2024; 158():253-277. PubMed ID: 38670709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular signature of quiescent satellite cells in adult skeletal muscle.
    Fukada S; Uezumi A; Ikemoto M; Masuda S; Segawa M; Tanimura N; Yamamoto H; Miyagoe-Suzuki Y; Takeda S
    Stem Cells; 2007 Oct; 25(10):2448-59. PubMed ID: 17600112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle.
    Miretti S; Volpe MG; Martignani E; Accornero P; Baratta M
    Animal; 2017 Feb; 11(2):227-235. PubMed ID: 27406318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Skeletal Muscle by microRNAs.
    Diniz GP; Wang DZ
    Compr Physiol; 2016 Jun; 6(3):1279-94. PubMed ID: 27347893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite cells and the muscle stem cell niche.
    Yin H; Price F; Rudnicki MA
    Physiol Rev; 2013 Jan; 93(1):23-67. PubMed ID: 23303905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules.
    Crist CG; Montarras D; Buckingham M
    Cell Stem Cell; 2012 Jul; 11(1):118-26. PubMed ID: 22770245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult skeletal muscle stem cells.
    Sambasivan R; Tajbakhsh S
    Results Probl Cell Differ; 2015; 56():191-213. PubMed ID: 25344672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing.
    Zhang M; Han Y; Liu J; Liu L; Zheng L; Chen Y; Xia R; Yao D; Cai X; Xu X
    Theranostics; 2020; 10(24):11159-11177. PubMed ID: 33042276
    [No Abstract]   [Full Text] [Related]  

  • 15. The lysine methyltransferase Ehmt2/G9a is dispensable for skeletal muscle development and regeneration.
    Zhang RH; Judson RN; Liu DY; Kast J; Rossi FM
    Skelet Muscle; 2016; 6():22. PubMed ID: 27239264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases.
    Zhao Y; Chen M; Lian D; Li Y; Li Y; Wang J; Deng S; Yu K; Lian Z
    Cells; 2019 Aug; 8(9):. PubMed ID: 31461973
    [No Abstract]   [Full Text] [Related]  

  • 17. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4.
    Lee KP; Shin YJ; Panda AC; Abdelmohsen K; Kim JY; Lee SM; Bahn YJ; Choi JY; Kwon ES; Baek SJ; Kim SY; Gorospe M; Kwon KS
    Genes Dev; 2015 Aug; 29(15):1605-17. PubMed ID: 26215566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Satellite Cells and Myogenic Progenitors During Skeletal Muscle Regeneration.
    Dumont NA; Rudnicki MA
    Methods Mol Biol; 2017; 1560():179-188. PubMed ID: 28155153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity.
    Matheny RW; Carrigan CT; Abdalla MN; Geddis AV; Leandry LA; Aguilar CA; Hobbs SS; Urso ML
    Growth Horm IGF Res; 2017 Feb; 32():14-21. PubMed ID: 27647425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. microRNAs in skeletal muscle development.
    Mok GF; Lozano-Velasco E; Münsterberg A
    Semin Cell Dev Biol; 2017 Dec; 72():67-76. PubMed ID: 29102719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.