BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29305004)

  • 1. Translational Control of the Myogenic Program in Developing, Regenerating, and Diseased Skeletal Muscle.
    Fujita R; Crist C
    Curr Top Dev Biol; 2018; 126():67-98. PubMed ID: 29305004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis.
    Koning M; Werker PM; van Luyn MJ; Krenning G; Harmsen MC
    Differentiation; 2012 Nov; 84(4):314-21. PubMed ID: 23023067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases.
    Li Y; Chen X; Sun H; Wang H
    Cancer Lett; 2018 Mar; 417():58-64. PubMed ID: 29253523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis.
    Zammit PS
    Semin Cell Dev Biol; 2017 Dec; 72():19-32. PubMed ID: 29127046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragile X mental retardation protein regulates skeletal muscle stem cell activity by regulating the stability of Myf5 mRNA.
    Fujita R; Zismanov V; Jacob JM; Jamet S; Asiev K; Crist C
    Skelet Muscle; 2017 Sep; 7(1):18. PubMed ID: 28882193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPARγ Controls Ectopic Adipogenesis and Cross-Talks with Myogenesis During Skeletal Muscle Regeneration.
    Dammone G; Karaz S; Lukjanenko L; Winkler C; Sizzano F; Jacot G; Migliavacca E; Palini A; Desvergne B; Gilardi F; Feige JN
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30011852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Navigating translational control of gene expression in satellite cells.
    Jiogo H; Crist C
    Curr Top Dev Biol; 2024; 158():253-277. PubMed ID: 38670709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular signature of quiescent satellite cells in adult skeletal muscle.
    Fukada S; Uezumi A; Ikemoto M; Masuda S; Segawa M; Tanimura N; Yamamoto H; Miyagoe-Suzuki Y; Takeda S
    Stem Cells; 2007 Oct; 25(10):2448-59. PubMed ID: 17600112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle.
    Miretti S; Volpe MG; Martignani E; Accornero P; Baratta M
    Animal; 2017 Feb; 11(2):227-235. PubMed ID: 27406318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Skeletal Muscle by microRNAs.
    Diniz GP; Wang DZ
    Compr Physiol; 2016 Jun; 6(3):1279-94. PubMed ID: 27347893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite cells and the muscle stem cell niche.
    Yin H; Price F; Rudnicki MA
    Physiol Rev; 2013 Jan; 93(1):23-67. PubMed ID: 23303905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules.
    Crist CG; Montarras D; Buckingham M
    Cell Stem Cell; 2012 Jul; 11(1):118-26. PubMed ID: 22770245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult skeletal muscle stem cells.
    Sambasivan R; Tajbakhsh S
    Results Probl Cell Differ; 2015; 56():191-213. PubMed ID: 25344672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing.
    Zhang M; Han Y; Liu J; Liu L; Zheng L; Chen Y; Xia R; Yao D; Cai X; Xu X
    Theranostics; 2020; 10(24):11159-11177. PubMed ID: 33042276
    [No Abstract]   [Full Text] [Related]  

  • 15. The lysine methyltransferase Ehmt2/G9a is dispensable for skeletal muscle development and regeneration.
    Zhang RH; Judson RN; Liu DY; Kast J; Rossi FM
    Skelet Muscle; 2016; 6():22. PubMed ID: 27239264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases.
    Zhao Y; Chen M; Lian D; Li Y; Li Y; Wang J; Deng S; Yu K; Lian Z
    Cells; 2019 Aug; 8(9):. PubMed ID: 31461973
    [No Abstract]   [Full Text] [Related]  

  • 17. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4.
    Lee KP; Shin YJ; Panda AC; Abdelmohsen K; Kim JY; Lee SM; Bahn YJ; Choi JY; Kwon ES; Baek SJ; Kim SY; Gorospe M; Kwon KS
    Genes Dev; 2015 Aug; 29(15):1605-17. PubMed ID: 26215566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Satellite Cells and Myogenic Progenitors During Skeletal Muscle Regeneration.
    Dumont NA; Rudnicki MA
    Methods Mol Biol; 2017; 1560():179-188. PubMed ID: 28155153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity.
    Matheny RW; Carrigan CT; Abdalla MN; Geddis AV; Leandry LA; Aguilar CA; Hobbs SS; Urso ML
    Growth Horm IGF Res; 2017 Feb; 32():14-21. PubMed ID: 27647425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. microRNAs in skeletal muscle development.
    Mok GF; Lozano-Velasco E; Münsterberg A
    Semin Cell Dev Biol; 2017 Dec; 72():67-76. PubMed ID: 29102719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.