These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 29305698)

  • 21. Adjustment of trehalose metabolism in wine Saccharomyces cerevisiae strains to modify ethanol yields.
    Rossouw D; Heyns EH; Setati ME; Bosch S; Bauer FF
    Appl Environ Microbiol; 2013 Sep; 79(17):5197-207. PubMed ID: 23793638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.
    Takagi H; Hashida K; Watanabe D; Nasuno R; Ohashi M; Iha T; Nezuo M; Tsukahara M
    J Biosci Bioeng; 2015 Feb; 119(2):140-7. PubMed ID: 25060730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast.
    Eden A; Van Nedervelde L; Drukker M; Benvenisty N; Debourg A
    Appl Microbiol Biotechnol; 2001 Apr; 55(3):296-300. PubMed ID: 11341309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.
    Jain VK; Divol B; Prior BA; Bauer FF
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals
    Souffriau B; Holt S; Hagman A; De Graeve S; Malcorps P; Foulquié-Moreno MR; Thevelein JM
    Appl Environ Microbiol; 2022 Sep; 88(18):e0081422. PubMed ID: 36073947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae.
    Ida K; Ishii J; Matsuda F; Kondo T; Kondo A
    Microb Cell Fact; 2015 Apr; 14():62. PubMed ID: 25925006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.
    Kim B; Cho BR; Hahn JS
    Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of flavor profiles in Chinese rice wine by creating fermenting yeast with superior ethanol tolerance and fermentation activity.
    Yang Y; Xia Y; Lin X; Wang G; Zhang H; Xiong Z; Yu H; Yu J; Ai L
    Food Res Int; 2018 Jun; 108():83-92. PubMed ID: 29735105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.
    Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS
    J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Core Regulatory Genes and Metabolic Pathways for the
    Wang YP; Sun ZG; Wei XQ; Guo XW; Xiao DG
    J Agric Food Chem; 2021 Feb; 69(5):1637-1646. PubMed ID: 33502852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation.
    Hu Z; Lin L; Li H; Li P; Weng Y; Zhang C; Yu A; Xiao D
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):511-523. PubMed ID: 32495196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening of cider yeasts for sparkling cider production (Champenoise method).
    Suárez Valles B; Pando Bedriñana R; Lastra Queipo A; Mangas Alonso JJ
    Food Microbiol; 2008 Aug; 25(5):690-7. PubMed ID: 18541168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering the cytosolic NADH availability in lager yeast to improve the aroma profile of beer.
    Xu X; Bao M; Niu C; Wang J; Liu C; Zheng F; Li Y; Li Q
    Biotechnol Lett; 2019 Mar; 41(3):363-369. PubMed ID: 30707389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Wickerhamomyces anomalus for Chinese Baijiu making.
    Zha M; Sun B; Wu Y; Yin S; Wang C
    J Biosci Bioeng; 2018 Aug; 126(2):189-195. PubMed ID: 29551466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of polyploid and alloploid Saccharomyces sensu stricto strains to leu2 mutants by genome DNA editing.
    Kiyokawa K; Sakuma T; Moriguchi K; Sugiyama M; Akao T; Yamamoto T; Suzuki K
    Appl Microbiol Biotechnol; 2024 Jul; 108(1):416. PubMed ID: 38995331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.