These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29305998)
1. Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Liu C; Carrera R; Flamini V; Kenny L; Cabahug-Zuckerman P; George BM; Hunter D; Liu B; Singh G; Leucht P; Mann KA; Helms JA; Castillo AB Bone; 2018 Mar; 108():145-155. PubMed ID: 29305998 [TBL] [Abstract][Full Text] [Related]
2. Mechanical Loading Promotes the Expansion of Primitive Osteoprogenitors and Organizes Matrix and Vascular Morphology in Long Bone Defects. Liu C; Cabahug-Zuckerman P; Stubbs C; Pendola M; Cai C; Mann KA; Castillo AB J Bone Miner Res; 2019 May; 34(5):896-910. PubMed ID: 30645780 [TBL] [Abstract][Full Text] [Related]
3. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis. Yang H; Butz KD; Duffy D; Niebur GL; Nauman EA; Main RP Bone; 2014 Sep; 66():131-9. PubMed ID: 24925445 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration. Sun D; Brodt MD; Zannit HM; Holguin N; Silva MJ J Orthop Res; 2018 Feb; 36(2):682-691. PubMed ID: 28888055 [TBL] [Abstract][Full Text] [Related]
5. Effects of in vivo mechanical loading on large bone defect regeneration. Boerckel JD; Kolambkar YM; Stevens HY; Lin AS; Dupont KM; Guldberg RE J Orthop Res; 2012 Jul; 30(7):1067-75. PubMed ID: 22170172 [TBL] [Abstract][Full Text] [Related]
6. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia. Yang H; Embry RE; Main RP PLoS One; 2017; 12(1):e0169519. PubMed ID: 28076363 [TBL] [Abstract][Full Text] [Related]
7. Strains caused by daily loading might be responsible for delayed healing of an incomplete atypical femoral fracture. Gustafsson A; Schilcher J; Grassi L; Aspenberg P; Isaksson H Bone; 2016 Jul; 88():125-130. PubMed ID: 27113528 [TBL] [Abstract][Full Text] [Related]
8. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice. Berman AG; Clauser CA; Wunderlin C; Hammond MA; Wallace JM PLoS One; 2015; 10(6):e0130504. PubMed ID: 26114891 [TBL] [Abstract][Full Text] [Related]
9. Knee loading accelerates bone healing in mice. Zhang P; Sun Q; Turner CH; Yokota H J Bone Miner Res; 2007 Dec; 22(12):1979-87. PubMed ID: 17696761 [TBL] [Abstract][Full Text] [Related]
10. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. Lacroix D; Prendergast PJ J Biomech; 2002 Sep; 35(9):1163-71. PubMed ID: 12163306 [TBL] [Abstract][Full Text] [Related]
11. Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Srinivasan S; Agans SC; King KA; Moy NY; Poliachik SL; Gross TS Bone; 2003 Dec; 33(6):946-55. PubMed ID: 14678854 [TBL] [Abstract][Full Text] [Related]
12. In vivo cyclic axial compression affects bone healing in the mouse tibia. Gardner MJ; van der Meulen MC; Demetrakopoulos D; Wright TM; Myers ER; Bostrom MP J Orthop Res; 2006 Aug; 24(8):1679-86. PubMed ID: 16788988 [TBL] [Abstract][Full Text] [Related]
13. Exploring conditions that make cortical bone geometry optimal for physiological loading. Sen C; Prasad J Biomech Model Mechanobiol; 2019 Oct; 18(5):1335-1349. PubMed ID: 30953214 [TBL] [Abstract][Full Text] [Related]
14. Bone adaptation compensates resorption when sciatic neurectomy is followed by low magnitude induced loading. Piet J; Hu D; Baron R; Shefelbine SJ Bone; 2019 Mar; 120():487-494. PubMed ID: 30586636 [TBL] [Abstract][Full Text] [Related]
15. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164 [TBL] [Abstract][Full Text] [Related]
16. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. Chlebek C; Moore JA; Ross FP; van der Meulen MCH J Bone Miner Res; 2022 Nov; 37(11):2277-2287. PubMed ID: 36054133 [TBL] [Abstract][Full Text] [Related]
17. Predicting cortical bone adaptation to axial loading in the mouse tibia. Pereira AF; Javaheri B; Pitsillides AA; Shefelbine SJ J R Soc Interface; 2015 Sep; 12(110):0590. PubMed ID: 26311315 [TBL] [Abstract][Full Text] [Related]
18. Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse. Yang H; Xu X; Bullock W; Main RP J Biomech; 2019 May; 89():85-94. PubMed ID: 31047696 [TBL] [Abstract][Full Text] [Related]
19. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading. Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566 [TBL] [Abstract][Full Text] [Related]
20. Role of parathyroid hormone in the mechanosensitivity of fracture healing. Gardner MJ; van der Meulen MC; Carson J; Zelken J; Ricciardi BF; Wright TM; Lane JM; Bostrom MP J Orthop Res; 2007 Nov; 25(11):1474-80. PubMed ID: 17568439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]