These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29306110)

  • 1. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis.
    Mailhiot SE; Zong F; Maneval JE; June RK; Galvosas P; Seymour JD
    J Magn Reson; 2018 Feb; 287():82-90. PubMed ID: 29306110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent analysis of T
    Petrov OV; Stapf S
    Magn Reson Med; 2019 May; 81(5):2858-2868. PubMed ID: 30537283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-components of T2 relaxation in ex vivo cartilage and tendon.
    Zheng S; Xia Y
    J Magn Reson; 2009 Jun; 198(2):188-96. PubMed ID: 19269868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse relaxation mechanisms in articular cartilage.
    Mlynárik V; Szomolányi P; Toffanin R; Vittur F; Trattnig S
    J Magn Reson; 2004 Aug; 169(2):300-7. PubMed ID: 15261626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho.
    Regatte RR; Akella SV; Borthakur A; Kneeland JB; Reddy R
    Acad Radiol; 2002 Dec; 9(12):1388-94. PubMed ID: 12553350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.
    Hannila I; Nieminen MT; Rauvala E; Tervonen O; Ojala R
    Acta Radiol; 2007 May; 48(4):444-8. PubMed ID: 17453527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and Quantitative 7 T MRI of Hip Cartilage Transplants in Comparison to 3 T-Initial Experiences.
    Lazik-Palm A; Kraff O; Johst S; Quick HH; Ladd ME; Geis C; Körsmeier K; Landgraeber S; Theysohn JM
    Invest Radiol; 2016 Sep; 51(9):552-9. PubMed ID: 27257866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biexponential T
    Sharafi A; Chang G; Regatte RR
    J Magn Reson Imaging; 2018 Mar; 47(3):809-819. PubMed ID: 28561955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable angle gray level co-occurrence matrix analysis of T
    Peuna A; Hekkala J; Haapea M; Podlipská J; Guermazi A; Saarakkala S; Nieminen MT; Lammentausta E
    J Magn Reson Imaging; 2018 May; 47(5):1316-1327. PubMed ID: 29091314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho.
    Kogan F; Hargreaves BA; Gold GE
    Magn Reson Med; 2017 Mar; 77(3):1134-1141. PubMed ID: 26923108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging.
    Xia Y; Farquhar T; Burton-Wurster N; Ray E; Jelinski LW
    Magn Reson Med; 1994 Mar; 31(3):273-82. PubMed ID: 8057798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influences of different spatial resolutions on the characteristics of T2 relaxation times in articular cartilage: A coarse-graining study of the microscopic magnetic resonance imaging data.
    Zhuang Z; Lee JH; Badar F; Xu J; Xia Y
    Microsc Res Tech; 2016 Aug; 79(8):754-65. PubMed ID: 27297720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study.
    Pandit P; Rivoire J; King K; Li X
    Magn Reson Med; 2016 Mar; 75(3):1256-61. PubMed ID: 25885368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influences of walking, running and stair activity on knee articular cartilage: Quantitative MRI using T1 rho and T2 mapping.
    Chen M; Qiu L; Shen S; Wang F; Zhang J; Zhang C; Liu S
    PLoS One; 2017; 12(11):e0187008. PubMed ID: 29136015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure.
    Shinar H; Navon G
    NMR Biomed; 2006 Nov; 19(7):877-93. PubMed ID: 17075957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unique anisotropic R
    Pang Y; Palmieri-Smith RM; Malyarenko DI; Swanson SD; Chenevert TL
    Magn Reson Med; 2019 Jun; 81(6):3763-3774. PubMed ID: 30793790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage.
    Rössler E; Mattea C; Stapf S
    J Magn Reson; 2015 Feb; 251():43-51. PubMed ID: 25557862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.
    Wei H; Gibbs E; Zhao P; Wang N; Cofer GP; Zhang Y; Johnson GA; Liu C
    Magn Reson Med; 2017 Nov; 78(5):1683-1690. PubMed ID: 28856712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between T1rho magnetic resonance imaging, synovial fluid biomarkers, and the biochemical and biomechanical properties of cartilage.
    Hatcher CC; Collins AT; Kim SY; Michel LC; Mostertz WC; Ziemian SN; Spritzer CE; Guilak F; DeFrate LE; McNulty AL
    J Biomech; 2017 Apr; 55():18-26. PubMed ID: 28237185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.