These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Wang R; Li C; Qiao P; Xue Y; Zheng X; Chen H; Zeng X; Liu W; Boldogh I; Ba X Cell Death Dis; 2018 May; 9(6):628. PubMed ID: 29795387 [TBL] [Abstract][Full Text] [Related]
4. Alzheimer's disease-associated polymorphisms in human OGG1 alter catalytic activity and sensitize cells to DNA damage. Jacob KD; Noren Hooten N; Tadokoro T; Lohani A; Barnes J; Evans MK Free Radic Biol Med; 2013 Oct; 63():115-25. PubMed ID: 23684897 [TBL] [Abstract][Full Text] [Related]
5. Oxidative DNA damage and reduced expression of DNA repair genes: Role in primary open angle glaucoma (POAG). Mohanty K; Dada R; Dada T Ophthalmic Genet; 2017; 38(5):446-450. PubMed ID: 28129013 [TBL] [Abstract][Full Text] [Related]
11. Ribociclib mitigates cisplatin-associated kidney injury through retinoblastoma-1 dependent mechanisms. Kim JY; Jayne LA; Bai Y; Feng MJHH; Clark MA; Chung S; W Christman J; Cianciolo RE; Pabla NS Biochem Pharmacol; 2020 Jul; 177():113939. PubMed ID: 32229099 [TBL] [Abstract][Full Text] [Related]
12. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin. Boetefuer EL; Lake RJ; Dreval K; Fan HY J Biol Chem; 2018 Nov; 293(46):17863-17874. PubMed ID: 30266807 [TBL] [Abstract][Full Text] [Related]
13. Ribociclib (LEE011) suppresses cell proliferation and induces apoptosis of MDA-MB-231 by inhibiting CDK4/6-cyclin D-Rb-E2F pathway. Li T; Xiong Y; Wang Q; Chen F; Zeng Y; Yu X; Wang Y; Zhou F; Zhou Y Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):4001-4011. PubMed ID: 31588803 [TBL] [Abstract][Full Text] [Related]
14. Targeting CDK4/6 in patients with cancer. Hamilton E; Infante JR Cancer Treat Rev; 2016 Apr; 45():129-38. PubMed ID: 27017286 [TBL] [Abstract][Full Text] [Related]
15. Transient OGG1, APE1, PARP1 and Polβ expression in an Alzheimer's disease mouse model. Lillenes MS; Støen M; Gómez-Muñoz M; Torp R; Günther CC; Nilsson LN; Tønjum T Mech Ageing Dev; 2013 Oct; 134(10):467-77. PubMed ID: 24121118 [TBL] [Abstract][Full Text] [Related]
16. Biological specificity of CDK4/6 inhibitors: dose response relationship, in vivo signaling, and composite response signature. Knudsen ES; Hutcheson J; Vail P; Witkiewicz AK Oncotarget; 2017 Jul; 8(27):43678-43691. PubMed ID: 28620137 [TBL] [Abstract][Full Text] [Related]
17. Chemoproteomics Reveals Novel Protein and Lipid Kinase Targets of Clinical CDK4/6 Inhibitors in Lung Cancer. Sumi NJ; Kuenzi BM; Knezevic CE; Remsing Rix LL; Rix U ACS Chem Biol; 2015 Dec; 10(12):2680-6. PubMed ID: 26390342 [TBL] [Abstract][Full Text] [Related]
18. PARP1 impact on DNA repair of platinum adducts: preclinical and clinical read-outs. Olaussen KA; Adam J; Vanhecke E; Vielh P; Pirker R; Friboulet L; Popper H; Robin A; Commo F; Thomale J; Kayitalire L; Filipits M; Le Chevalier T; André F; Brambilla E; Soria JC Lung Cancer; 2013 May; 80(2):216-22. PubMed ID: 23410825 [TBL] [Abstract][Full Text] [Related]
19. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Zhao B; Burgess K Chem Commun (Camb); 2019 Feb; 55(18):2704-2707. PubMed ID: 30758029 [TBL] [Abstract][Full Text] [Related]
20. CDK4/6 Inhibitors Impede Chemoresistance and Inhibit Tumor Growth of Small Cell Lung Cancer. Wen Y; Sun X; Zeng L; Liang S; Li D; Chen X; Zeng F; Zhang C; Wang Q; Zhong Q; Deng L; Guo L Adv Sci (Weinh); 2024 Oct; 11(38):e2400666. PubMed ID: 39136283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]