These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29306432)

  • 1. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation.
    Thompson JW; Griffin ME; Hsieh-Wilson LC
    Methods Enzymol; 2018; 598():101-135. PubMed ID: 29306432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O-GlcNAc Site Mapping by Using a Combination of Chemoenzymatic Labeling, Copper-Free Click Chemistry, Reductive Cleavage, and Electron-Transfer Dissociation Mass Spectrometry.
    Ma J; Wang WH; Li Z; Shabanowitz J; Hunt DF; Hart GW
    Anal Chem; 2019 Feb; 91(4):2620-2625. PubMed ID: 30657688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of O-GlcNAc glycosylation stoichiometry and dynamics using resolvable poly(ethylene glycol) mass tags.
    Clark PM; Rexach JE; Hsieh-Wilson LC
    Curr Protoc Chem Biol; 2013; 5(4):281-302. PubMed ID: 24391098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins.
    Deracinois B; Camoin L; Lambert M; Boyer JB; Dupont E; Bastide B; Cieniewski-Bernard C
    J Proteomics; 2018 Aug; 186():83-97. PubMed ID: 30016717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of O-GlcNAc sites on proteins.
    Whelan SA; Hart GW
    Methods Enzymol; 2006; 415():113-33. PubMed ID: 17116471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive mapping of O-GlcNAc modification sites using a chemically cleavable tag.
    Griffin ME; Jensen EH; Mason DE; Jenkins CL; Stone SE; Peters EC; Hsieh-Wilson LC
    Mol Biosyst; 2016 May; 12(6):1756-9. PubMed ID: 27063346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible hydrazide chemistry-based enrichment for O-GlcNAc-modified peptides and glycopeptides having non-reducing GlcNAc residues.
    Nishikaze T; Kawabata S; Iwamoto S; Tanaka K
    Analyst; 2013 Dec; 138(23):7224-32. PubMed ID: 24131013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Chemoenzymatic Mass Tagging by Strain-Promoted Cycloaddition (SPAAC) for the Determination of O-GlcNAc Stoichiometry by Western Blotting.
    Darabedian N; Thompson JW; Chuh KN; Hsieh-Wilson LC; Pratt MR
    Biochemistry; 2018 Oct; 57(40):5769-5774. PubMed ID: 30169966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass Spectrometry-Based Quantitative O-GlcNAcomic Analysis.
    Ma J; Hart GW
    Methods Mol Biol; 2016; 1410():91-103. PubMed ID: 26867740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress.
    Butkinaree C; Park K; Hart GW
    Biochim Biophys Acta; 2010 Feb; 1800(2):96-106. PubMed ID: 19647786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The O-GlcNAc Modification of Recombinant Tau Protein and Characterization of the O-GlcNAc Pattern for Functional Study.
    El Hajjar L; Bridot C; Nguyen M; Cantrelle FX; Landrieu I; Smet-Nocca C
    Methods Mol Biol; 2024; 2754():237-269. PubMed ID: 38512671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry.
    Hahne H; Sobotzki N; Nyberg T; Helm D; Borodkin VS; van Aalten DM; Agnew B; Kuster B
    J Proteome Res; 2013 Feb; 12(2):927-36. PubMed ID: 23301498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Interrogation to Crack the Case of O-GlcNAc.
    Estevez A; Zhu D; Blankenship C; Jiang J
    Chemistry; 2020 Sep; 26(53):12086-12100. PubMed ID: 32207184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in chemical probing of protein
    Saha A; Bello D; Fernández-Tejada A
    Chem Soc Rev; 2021 Sep; 50(18):10451-10485. PubMed ID: 34338261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoproteomic profiling of O-GlcNAcylated proteins and identification of O-GlcNAc transferases in rice.
    Li X; Lei C; Song Q; Bai L; Cheng B; Qin K; Li X; Ma B; Wang B; Zhou W; Chen X; Li J
    Plant Biotechnol J; 2023 Apr; 21(4):742-753. PubMed ID: 36577688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical biology tools to interrogate the roles of
    Saha A; Fernández-Tejada A
    Front Immunol; 2022; 13():1089824. PubMed ID: 36776401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the selectivity of DIFO-based reagents for intracellular bioorthogonal applications.
    Kim EJ; Kang DW; Leucke HF; Bond MR; Ghosh S; Love DC; Ahn JS; Kang DO; Hanover JA
    Carbohydr Res; 2013 Aug; 377():18-27. PubMed ID: 23770695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of structural and functional O-linked N-acetylglucosamine-bearing proteins in Xenopus laevis oocyte.
    Dehennaut V; Slomianny MC; Page A; Vercoutter-Edouart AS; Jessus C; Michalski JC; Vilain JP; Bodart JF; Lefebvre T
    Mol Cell Proteomics; 2008 Nov; 7(11):2229-45. PubMed ID: 18617508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the Functions of O-GlcNAc Glycosylation in the Brain: The Role of Site-Specific Quantitative O-GlcNAcomics.
    Thompson JW; Sorum AW; Hsieh-Wilson LC
    Biochemistry; 2018 Jul; 57(27):4010-4018. PubMed ID: 29936833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.