These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29306444)

  • 21. Multifunctional Polymer Ligand Interface CdZnSeS/ZnS Quantum Dot/Cy3-Labeled Protein Pairs as Sensitive FRET Sensors.
    Yang HY; Fu Y; Jang MS; Li Y; Lee JH; Chae H; Lee DS
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35021-35032. PubMed ID: 27983790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A homogeneous immunosensor for AFB1 detection based on FRET between different-sized quantum dots.
    Xu W; Xiong Y; Lai W; Xu Y; Li C; Xie M
    Biosens Bioelectron; 2014 Jun; 56():144-50. PubMed ID: 24487101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of quantum dot-binding protein tags: affinity determination by ultracentrifugation and FRET.
    Werwie M; Fehr N; Xu X; Basché T; Paulsen H
    Biochim Biophys Acta; 2014 Jun; 1840(6):1651-6. PubMed ID: 24361618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational Details of Quantum Dot-DNA Resolved by Förster Resonance Energy Transfer Lifetime Nanoruler.
    Guo J; Qiu X; Mingoes C; Deschamps JR; Susumu K; Medintz IL; Hildebrandt N
    ACS Nano; 2019 Jan; 13(1):505-514. PubMed ID: 30508369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycosylated Peptoid Nanosheets as a Multivalent Scaffold for Protein Recognition.
    Battigelli A; Kim JH; Dehigaspitiya DC; Proulx C; Robertson EJ; Murray DJ; Rad B; Kirshenbaum K; Zuckermann RN
    ACS Nano; 2018 Mar; 12(3):2455-2465. PubMed ID: 29512997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, synthesis, and application of particle-based fluorescence resonance energy transfer sensors for carbohydrates and glycoproteins.
    Blagoi G; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2005 Jan; 77(2):393-9. PubMed ID: 15649033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer.
    Wu CS; Cupps JM; Fan X
    Nanotechnology; 2009 Jul; 20(30):305502. PubMed ID: 19581695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing lipid coating dynamics of quantum dot core micelles via Förster resonance energy transfer.
    Zhao Y; Schapotschnikow P; Skajaa T; Vlugt TJ; Mulder WJ; de Mello Donegá C; Meijerink A
    Small; 2014 Mar; 10(6):1163-70. PubMed ID: 24343988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.
    Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D
    Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
    Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL
    Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis.
    Wang J; Xia J
    Anal Chem; 2011 Aug; 83(16):6323-9. PubMed ID: 21728332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity.
    Lim B; Park JI; Lee KJ; Lee JW; Kim TW; Kim YP
    Sensors (Basel); 2015 Jul; 15(8):17977-89. PubMed ID: 26213934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum Dot-Based FRET Immunoassay for HER2 Using Ultrasmall Affinity Proteins.
    Wu YT; Qiu X; Lindbo S; Susumu K; Medintz IL; Hober S; Hildebrandt N
    Small; 2018 Aug; 14(35):e1802266. PubMed ID: 30079524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.
    Geißler D; Hildebrandt N
    Anal Bioanal Chem; 2016 Jul; 408(17):4475-83. PubMed ID: 26970745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes.
    Dennis AM; Bao G
    Nano Lett; 2008 May; 8(5):1439-45. PubMed ID: 18412403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of multivalent protein ligands and quantum dots: a multifaceted investigation.
    Wang J; Nie Y; Lu Y; Liu J; Wang J; Fu A; Liu T; Xia J
    Langmuir; 2014 Mar; 30(8):2161-9. PubMed ID: 24063590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.