BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 29306631)

  • 1. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases.
    Spicer V; Krokhin OV
    J Chromatogr A; 2018 Jan; 1534():75-84. PubMed ID: 29306631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide retention time prediction in hydrophilic interaction liquid chromatography: Zwitter-ionic sulfoalkylbetaine and phosphorylcholine stationary phases.
    Yeung D; Klaassen N; Mizero B; Spicer V; Krokhin OV
    J Chromatogr A; 2020 May; 1619():460909. PubMed ID: 32007221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-Specific Model for Peptide Retention Time Prediction in Strong Cation Exchange Chromatography.
    Gussakovsky D; Neustaeter H; Spicer V; Krokhin OV
    Anal Chem; 2017 Nov; 89(21):11795-11802. PubMed ID: 28971681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide Retention Time Prediction in Hydrophilic Interaction Liquid Chromatography: Data Collection Methods and Features of Additive and Sequence-Specific Models.
    Krokhin OV; Ezzati P; Spicer V
    Anal Chem; 2017 May; 89(10):5526-5533. PubMed ID: 28429592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention behavior of peptides in hydrophilic-interaction chromatography.
    Gilar M; Jaworski A
    J Chromatogr A; 2011 Dec; 1218(49):8890-6. PubMed ID: 21530976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode.
    Bicker W; Wu J; Yeman H; Albert K; Lindner W
    J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode.
    Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S
    Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polar silica-based stationary phases. Part I - Singly and doubly layered sorbents consisting of TRIS-silica and chondroitin sulfate A-TRIS-silica for hydrophilic interaction liquid chromatography.
    Rathnasekara R; El Rassi Z
    Electrophoresis; 2017 Jun; 38(12):1582-1591. PubMed ID: 28247915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of silica gel modification with cyclofructans on properties of hydrophilic interaction liquid chromatography stationary phases.
    Kozlík P; Símová V; Kalíková K; Bosáková Z; Armstrong DW; Tesařová E
    J Chromatogr A; 2012 Sep; 1257():58-65. PubMed ID: 22921504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation of xylitol and maltitol modified silica as novel stationary phases for hydrophilic interaction liquid chromatography and evaluation of their separation performance].
    Yong T; Wu F; Xiao H; Wan B
    Se Pu; 2015 Sep; 33(9):910-6. PubMed ID: 26753275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic interaction liquid chromatography for dalargin separation from its structural analogues and side products.
    Abbood A; Smadja C; Taverna M; Herrenknecht C
    J Chromatogr A; 2017 May; 1498():155-162. PubMed ID: 28173925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds?
    McCalley DV
    J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-bonded amide-functionalized imidazolium ionic liquid as stationary phase for hydrophilic interaction liquid chromatography.
    Qiao L; Lv W; Chang M; Shi X; Xu G
    J Chromatogr A; 2018 Jul; 1559():141-148. PubMed ID: 28734605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase.
    Shen A; Guo Z; Cai X; Xue X; Liang X
    J Chromatogr A; 2012 Mar; 1228():175-82. PubMed ID: 22099229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma.
    Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D
    J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The retention behaviour of polar compounds on zirconia based stationary phases under hydrophilic interaction liquid chromatography conditions.
    Kučera R; Kovaříková P; Klivický M; Klimeš J
    J Chromatogr A; 2011 Sep; 1218(39):6981-6. PubMed ID: 21880318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of multiphosphorylated cyclopeptides and their positional isomers by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS).
    Abou Zeid L; Pell A; Tytus T; Delangle P; Bresson C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jul; 1177():122792. PubMed ID: 34102536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of ionic interactions to stationary phase selectivity in hydrophilic interaction chromatography.
    Gilar M; Berthelette KD; Walter TH
    J Sep Sci; 2022 Sep; 45(17):3264-3275. PubMed ID: 35347885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.