These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29306841)

  • 41. An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: A novel approach to mechanism.
    Malik R; Dahiya S; Lata S
    Int J Biol Macromol; 2017 May; 98():139-149. PubMed ID: 28130136
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine.
    Nejadshafiee V; Islami MR
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1625-1639. PubMed ID: 31755054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.
    Rungrodnimitchai S
    ScientificWorldJournal; 2014; 2014():634837. PubMed ID: 24578651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent.
    Bartczak P; Klapiszewski Ł; Wysokowski M; Majchrzak I; Czernicka W; Piasecki A; Ehrlich H; Jesionowski T
    J Environ Manage; 2017 Dec; 204(Pt 1):300-310. PubMed ID: 28898751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents.
    Rocha CG; Zaia DA; Alfaya RV; Alfaya AA
    J Hazard Mater; 2009 Jul; 166(1):383-8. PubMed ID: 19131165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of metals from mine drainage waters by in situ mineral sorbent-based pilot filter systems.
    Postila H; Heiderscheidt E; Leiviskä T
    J Environ Manage; 2019 Apr; 236():631-638. PubMed ID: 30772720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions.
    Oliveira WE; Franca AS; Oliveira LS; Rocha SD
    J Hazard Mater; 2008 Apr; 152(3):1073-81. PubMed ID: 17804159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Agricultural by-products as low-cost sorbents for the removal of heavy metals from dilute wastewaters.
    Humelnicu D; Ignat M; Doroftei F
    Environ Monit Assess; 2015 May; 187(5):222. PubMed ID: 25832011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The treatment industrial sewage of nonferrous heavy metals using biosorbents].
    Zakharova VI; Ignat'ev VO; Korenevskiĭ AA; Avakian ZA; Karavaĭko GI
    Prikl Biokhim Mikrobiol; 2001; 37(4):405-12. PubMed ID: 11530662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.
    Lourie E; Gjengedal E
    Chemosphere; 2011 Oct; 85(5):759-64. PubMed ID: 21788059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heavy metal removal from industrial wastewater by clinoptilolite.
    Kocasoy G; Sahin V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Dec; 42(14):2139-46. PubMed ID: 18074286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents.
    Zhou G; Luo J; Liu C; Chu L; Crittenden J
    Water Res; 2018 Mar; 131():246-254. PubMed ID: 29294433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.
    Baker HM; Massadeh AM; Younes HA
    Environ Monit Assess; 2009 Oct; 157(1-4):319-30. PubMed ID: 18830802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unravelled keratin-derived biopolymers as novel biosorbents for the simultaneous removal of multiple trace metals from industrial wastewater.
    Donner MW; Arshad M; Ullah A; Siddique T
    Sci Total Environ; 2019 Jan; 647():1539-1546. PubMed ID: 30180358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.
    Xu X; Cao X; Zhao L; Wang H; Yu H; Gao B
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process.
    Zhou G; Liu C; Chu L; Tang Y; Luo S
    Bioresour Technol; 2016 Nov; 219():451-457. PubMed ID: 27521781
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Treatment of metal (loid) contaminated solutions using iron-peat as sorbent: is landfilling a suitable management option for the spent sorbent?
    Kasiuliene A; Carabante I; Bhattacharya P; Kumpiene J
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21425-21436. PubMed ID: 31119550
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of Cr(III), Ni(II) and Cu(II) by poly(gamma-glutamic acid) from Bacillus subtilis NX-2.
    Yao J; Xu H; Wang J; Jiang M; Ouyang P
    J Biomater Sci Polym Ed; 2007; 18(2):193-204. PubMed ID: 17323853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.