BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29307272)

  • 1. Decomposing properties of phosphogypsum with iron addition under two-step cycle multi-atmosphere control in fluidised bed.
    Zheng D; Ma L; Wang R; Yang J; Dai Q
    Waste Manag Res; 2018 Feb; 36(2):183-193. PubMed ID: 29307272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valorization of phosphogypsum waste as asphaltic bitumen modifier.
    Cuadri AA; Navarro FJ; García-Morales M; Bolívar JP
    J Hazard Mater; 2014 Aug; 279():11-6. PubMed ID: 25036995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics.
    Xue S; Li M; Jiang J; Millar GJ; Li C; Kong X
    J Environ Sci (China); 2019 Mar; 77():1-10. PubMed ID: 30573073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum.
    Zhang Y; Dai S; Weng W; Huang J; Su Y; Cai Y
    J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e62-e68. PubMed ID: 28657108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO₂ sequestration.
    Contreras M; Pérez-López R; Gázquez MJ; Morales-Flórez V; Santos A; Esquivias L; Bolívar JP
    Waste Manag; 2015 Nov; 45():412-9. PubMed ID: 26209345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study on Optimization of Phosphogypsum Suspension Decomposition Conditions under Double Catalysis.
    Xu P; Li H; Chen Y
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution characteristics of 226Ra from phosphogypsum.
    Haridasan PP; Maniyan CG; Pillai PM; Khan AH
    J Environ Radioact; 2002; 62(3):287-94. PubMed ID: 12164633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration.
    Cárdenas-Escudero C; Morales-Flórez V; Pérez-López R; Santos A; Esquivias L
    J Hazard Mater; 2011 Nov; 196():431-5. PubMed ID: 21982535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2009 Oct; 100(10):854-7. PubMed ID: 19596498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel and sustainable approach for biotransformation of phosphogypsum to calcium carbonate using urease producing
    Patil PP; Prabhu M; Mutnuri S
    Environ Technol; 2023 Jan; 44(2):226-239. PubMed ID: 34383628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of radiation exposures in a tropical phosphogypsum disposal environment.
    Haridasan PP; Pillai PM; Tripathi RM; Puranik VD
    Radiat Prot Dosimetry; 2009 Jul; 135(3):211-5. PubMed ID: 19483206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of phosphogypsum waste produced from phosphate ore processing.
    El-Didamony H; Gado HS; Awwad NS; Fawzy MM; Attallah MF
    J Hazard Mater; 2013 Jan; 244-245():596-602. PubMed ID: 23195600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of phosphogypsum as hydraulic binder.
    Kuryatnyk T; Angulski da Luz C; Ambroise J; Pera J
    J Hazard Mater; 2008 Dec; 160(2-3):681-7. PubMed ID: 18433998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry.
    Lütke SF; Oliveira MLS; Silva LFO; Cadaval TRS; Dotto GL
    Chemosphere; 2020 Oct; 256():127138. PubMed ID: 32450348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection.
    El Zrelli R; Rabaoui L; Daghbouj N; Abda H; Castet S; Josse C; van Beek P; Souhaut M; Michel S; Bejaoui N; Courjault-Radé P
    Environ Sci Pollut Res Int; 2018 May; 25(15):14690-14702. PubMed ID: 29532384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.
    Cañete SJ; Palad LJ; Enriquez EB; Garcia TY; Yulo-Nazarea T
    Environ Monit Assess; 2008 Jul; 142(1-3):337-44. PubMed ID: 17874311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes.
    Pérez-López R; Alvarez-Valero AM; Nieto JM
    J Hazard Mater; 2007 Sep; 148(3):745-50. PubMed ID: 17683858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations on the activity concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan phosphogypsum and fertilizers.
    Al-Jundi J; Al-Ahmad N; Shehadeh H; Afaneh F; Maghrabi M; Gerstmann U; Höllriegl V; Oeh U
    Radiat Prot Dosimetry; 2008; 131(4):449-54. PubMed ID: 18701517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclide migration and the environmental radiochemistry of Florida phosphogypsum.
    Burnett WC; Elzerman AW
    J Environ Radioact; 2001; 54(1):27-51. PubMed ID: 11379072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of mesoscale meteorology in modulating the (222)Rn concentrations in Huelva (Spain)--impact of phosphogypsum piles.
    Hernández-Ceballos MA; Vargas A; Arnold D; Bolívar JP
    J Environ Radioact; 2015 Jul; 145():1-9. PubMed ID: 25855087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.