BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29307506)

  • 1. Structural basis for expanding the application of bioligand in metal bioremediation: A review.
    Sharma V; Pant D
    Bioresour Technol; 2018 Mar; 252():188-197. PubMed ID: 29307506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation: an overview of metallic ion decontamination from soil.
    Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives of plant-associated microbes in heavy metal phytoremediation.
    Rajkumar M; Sandhya S; Prasad MN; Freitas H
    Biotechnol Adv; 2012; 30(6):1562-74. PubMed ID: 22580219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.
    Mishra GK
    Recent Pat Biotechnol; 2017; 11(3):188-196. PubMed ID: 28116999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation.
    Marques CR
    Sci Total Environ; 2016 Sep; 565():165-180. PubMed ID: 27161138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge.
    Gu T; Rastegar SO; Mousavi SM; Li M; Zhou M
    Bioresour Technol; 2018 Aug; 261():428-440. PubMed ID: 29703427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
    Navarro CA; von Bernath D; Jerez CA
    Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of streptomycetes in soil and their impact on bioremediation.
    Schütze E; Klose M; Merten D; Nietzsche S; Senftleben D; Roth M; Kothe E
    J Hazard Mater; 2014 Feb; 267():128-35. PubMed ID: 24440654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genes of metal-binding proteins and their application in bioremediation of heavy metals].
    Jiao FC; Mao X; Li RZ
    Yi Chuan; 2002 Jan; 24(1):82-6. PubMed ID: 15901570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection.
    Vargas-García Mdel C; López MJ; Suárez-Estrella F; Moreno J
    Sci Total Environ; 2012 Aug; 431():62-7. PubMed ID: 22664539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.
    Fernández-Fuego D; Bertrand A; González A
    Environ Pollut; 2017 Dec; 231(Pt 1):1153-1162. PubMed ID: 28941719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review with recent advancements on bioremediation-based abolition of heavy metals.
    Gaur N; Flora G; Yadav M; Tiwari A
    Environ Sci Process Impacts; 2014 Feb; 16(2):180-93. PubMed ID: 24362580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.
    Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.
    Das S; Dash HR; Chakraborty J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2967-84. PubMed ID: 26860944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions.
    Sanghi R; Sankararamakrishnan N; Dave BC
    J Hazard Mater; 2009 Sep; 169(1-3):1074-80. PubMed ID: 19467785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.