BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29307608)

  • 1. Insight and inference for DVARS.
    Afyouni S; Nichols TE
    Neuroimage; 2018 May; 172():291-312. PubMed ID: 29307608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.
    Patriat R; Molloy EK; Birn RM
    Brain Connect; 2015 Nov; 5(9):582-95. PubMed ID: 26107049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.
    Hallquist MN; Hwang K; Luna B
    Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative.
    De Rosa AP; Esposito F; Valsasina P; d'Ambrosio A; Bisecco A; Rocca MA; Tommasin S; Marzi C; De Stefano N; Battaglini M; Pantano P; Cirillo M; Tedeschi G; Filippi M; Gallo A;
    J Neurol; 2023 Feb; 270(2):1047-1066. PubMed ID: 36350401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time and Recursive Estimators for Functional MRI Quality Assessment.
    Davydov N; Peek L; Auer T; Prilepin E; Gninenko N; Van De Ville D; Nikonorov A; Koush Y
    Neuroinformatics; 2022 Oct; 20(4):897-917. PubMed ID: 35297018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
    Parkes L; Fulcher B; Yücel M; Fornito A
    Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing.
    Phạm DĐ; McDonald DJ; Ding L; Nebel MB; Mejia AF
    Neuroimage; 2023 Apr; 270():119972. PubMed ID: 36842522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of sampling rate on statistical significance for single subject fMRI connectivity analysis.
    James O; Park H; Kim SG
    Hum Brain Mapp; 2019 Aug; 40(11):3321-3337. PubMed ID: 31004386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A variance components model for statistical inference on functional connectivity networks.
    Fiecas M; Cribben I; Bahktiari R; Cummine J
    Neuroimage; 2017 Apr; 149():256-266. PubMed ID: 28130192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined spatiotemporal ICA (stICA) for continuous and dynamic lag structure analysis of MREG data.
    Raatikainen V; Huotari N; Korhonen V; Rasila A; Kananen J; Raitamaa L; Keinänen T; Kantola J; Tervonen O; Kiviniemi V
    Neuroimage; 2017 Mar; 148():352-363. PubMed ID: 28088482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
    Afshin-Pour B; Grady C; Strother S
    Neuroimage; 2014 Feb; 87():363-82. PubMed ID: 24201012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A longitudinal model for functional connectivity networks using resting-state fMRI.
    Hart B; Cribben I; Fiecas M;
    Neuroimage; 2018 Sep; 178():687-701. PubMed ID: 29879474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation.
    Bartoň M; Mareček R; Krajčovičová L; Slavíček T; Kašpárek T; Zemánková P; Říha P; Mikl M
    Hum Brain Mapp; 2019 Mar; 40(4):1114-1138. PubMed ID: 30403309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset.
    Gong J; Liu X; Liu T; Zhou J; Sun G; Tian J
    IEEE Trans Biomed Eng; 2018 May; 65(5):1035-1048. PubMed ID: 28796604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.
    Zerbi V; Grandjean J; Rudin M; Wenderoth N
    Neuroimage; 2015 Dec; 123():11-21. PubMed ID: 26296501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.