BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 29307777)

  • 21. Mutant activin-like kinase 2 in fibrodysplasia ossificans progressiva are activated via T203 by BMP type II receptors.
    Fujimoto M; Ohte S; Osawa K; Miyamoto A; Tsukamoto S; Mizuta T; Kokabu S; Suda N; Katagiri T
    Mol Endocrinol; 2015 Jan; 29(1):140-52. PubMed ID: 25354296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The congenital great toe malformation of fibrodysplasia ossificans progressiva? - A close call.
    Towler OW; Shore EM; Xu M; Bamford A; Anderson I; Pignolo RJ; Kaplan FS
    Eur J Med Genet; 2017 Jul; 60(7):399-402. PubMed ID: 28473268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis.
    Stanley A; Heo SJ; Mauck RL; Mourkioti F; Shore EM
    J Bone Miner Res; 2019 Oct; 34(10):1894-1909. PubMed ID: 31107558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterotopic bone induction via BMP signaling: Potential therapeutic targets for fibrodysplasia ossificans progressiva.
    Katagiri T; Tsukamoto S; Kuratani M
    Bone; 2018 Apr; 109():241-250. PubMed ID: 28754575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP).
    Towler OW; Shore EM
    Dev Dyn; 2022 Jan; 251(1):164-177. PubMed ID: 34133058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel mutation of ALK2, L196P, found in the most benign case of fibrodysplasia ossificans progressiva activates BMP-specific intracellular signaling equivalent to a typical mutation, R206H.
    Ohte S; Shin M; Sasanuma H; Yoneyama K; Akita M; Ikebuchi K; Jimi E; Maruki Y; Matsuoka M; Namba A; Tomoda H; Okazaki Y; Ohtake A; Oda H; Owan I; Yoda T; Furuya H; Kamizono J; Kitoh H; Nakashima Y; Susami T; Haga N; Komori T; Katagiri T
    Biochem Biophys Res Commun; 2011 Apr; 407(1):213-8. PubMed ID: 21377447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation.
    van Dinther M; Visser N; de Gorter DJ; Doorn J; Goumans MJ; de Boer J; ten Dijke P
    J Bone Miner Res; 2010 Jun; 25(6):1208-15. PubMed ID: 19929436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-system involvement in a severe variant of fibrodysplasia ossificans progressiva (ACVR1 c.772G>A; R258G): A report of two patients.
    Kaplan FS; Kobori JA; Orellana C; Calvo I; Rosello M; Martinez F; Lopez B; Xu M; Pignolo RJ; Shore EM; Groppe JC
    Am J Med Genet A; 2015 Oct; 167A(10):2265-71. PubMed ID: 26097044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morpholino-Mediated Exon Skipping Targeting Human ACVR1/ALK2 for Fibrodysplasia Ossificans Progressiva.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():497-502. PubMed ID: 30171563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of New Therapeutic Agents for Fibrodysplasia Ossificans Progressiva.
    Luo Y; Alsamarah A; Zhang K; Hao J
    Curr Mol Med; 2016; 16(1):4-11. PubMed ID: 26695699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constitutively activated ALK2 and increased SMAD1/5 cooperatively induce bone morphogenetic protein signaling in fibrodysplasia ossificans progressiva.
    Fukuda T; Kohda M; Kanomata K; Nojima J; Nakamura A; Kamizono J; Noguchi Y; Iwakiri K; Kondo T; Kurose J; Endo K; Awakura T; Fukushi J; Nakashima Y; Chiyonobu T; Kawara A; Nishida Y; Wada I; Akita M; Komori T; Nakayama K; Nanba A; Maruki Y; Yoda T; Tomoda H; Yu PB; Shore EM; Kaplan FS; Miyazono K; Matsuoka M; Ikebuchi K; Ohtake A; Oda H; Jimi E; Owan I; Okazaki Y; Katagiri T
    J Biol Chem; 2009 Mar; 284(11):7149-56. PubMed ID: 18684712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A case of Fibrodysplasia Ossificans Progressiva associated with a novel variant of the ACVR1 gene.
    Cappato S; Traberg R; Gintautiene J; Zara F; Bocciardi R
    Mol Genet Genomic Med; 2021 Oct; 9(10):e1774. PubMed ID: 34347384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1.
    Aykul S; Huang L; Wang L; Das NM; Reisman S; Ray Y; Zhang Q; Rothman N; Nannuru KC; Kamat V; Brydges S; Troncone L; Johnsen L; Yu PB; Fazio S; Lees-Shepard J; Schutz K; Murphy AJ; Economides AN; Idone V; Hatsell SJ
    J Clin Invest; 2022 Jun; 132(12):. PubMed ID: 35511419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ACVR1-activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans.
    Yu X; Ton AN; Niu Z; Morales BM; Chen J; Braz J; Lai MH; Barruet E; Liu H; Cheung K; Ali S; Chan T; Bigay K; Ho J; Nikolli I; Hansberry S; Wentworth K; Kriegstein A; Basbaum A; Hsiao EC
    Pain; 2023 Jan; 164(1):43-58. PubMed ID: 35442931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP).
    Billings PC; Fiori JL; Bentwood JL; O'Connell MP; Jiao X; Nussbaum B; Caron RJ; Shore EM; Kaplan FS
    J Bone Miner Res; 2008 Mar; 23(3):305-13. PubMed ID: 17967130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An anti-ACVR1 antibody exacerbates heterotopic ossification by fibro-adipogenic progenitors in fibrodysplasia ossificans progressiva mice.
    Lees-Shepard JB; Stoessel SJ; Chandler JT; Bouchard K; Bento P; Apuzzo LN; Devarakonda PM; Hunter JW; Goldhamer DJ
    J Clin Invest; 2022 Jun; 132(12):. PubMed ID: 35503416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification.
    Culbert AL; Chakkalakal SA; Theosmy EG; Brennan TA; Kaplan FS; Shore EM
    Stem Cells; 2014 May; 32(5):1289-300. PubMed ID: 24449086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva.
    Lees-Shepard JB; Yamamoto M; Biswas AA; Stoessel SJ; Nicholas SE; Cogswell CA; Devarakonda PM; Schneider MJ; Cummins SM; Legendre NP; Yamamoto S; Kaartinen V; Hunter JW; Goldhamer DJ
    Nat Commun; 2018 Feb; 9(1):471. PubMed ID: 29396429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ACVR1 p.Q207E causes classic fibrodysplasia ossificans progressiva and is functionally distinct from the engineered constitutively active ACVR1 p.Q207D variant.
    Haupt J; Deichsel A; Stange K; Ast C; Bocciardi R; Ravazzolo R; Di Rocco M; Ferrari P; Landi A; Kaplan FS; Shore EM; Reissner C; Seemann P
    Hum Mol Genet; 2014 Oct; 23(20):5364-77. PubMed ID: 24852373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activin A forms a non-signaling complex with ACVR1 and type II Activin/BMP receptors via its finger 2 tip loop.
    Aykul S; Corpina RA; Goebel EJ; Cunanan CJ; Dimitriou A; Kim HJ; Zhang Q; Rafique A; Leidich R; Wang X; McClain J; Jimenez J; Nannuru KC; Rothman NJ; Lees-Shepard JB; Martinez-Hackert E; Murphy AJ; Thompson TB; Economides AN; Idone V
    Elife; 2020 Jun; 9():. PubMed ID: 32515349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.