These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 29307777)

  • 21. Mutant activin-like kinase 2 in fibrodysplasia ossificans progressiva are activated via T203 by BMP type II receptors.
    Fujimoto M; Ohte S; Osawa K; Miyamoto A; Tsukamoto S; Mizuta T; Kokabu S; Suda N; Katagiri T
    Mol Endocrinol; 2015 Jan; 29(1):140-52. PubMed ID: 25354296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The congenital great toe malformation of fibrodysplasia ossificans progressiva? - A close call.
    Towler OW; Shore EM; Xu M; Bamford A; Anderson I; Pignolo RJ; Kaplan FS
    Eur J Med Genet; 2017 Jul; 60(7):399-402. PubMed ID: 28473268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis.
    Stanley A; Heo SJ; Mauck RL; Mourkioti F; Shore EM
    J Bone Miner Res; 2019 Oct; 34(10):1894-1909. PubMed ID: 31107558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterotopic bone induction via BMP signaling: Potential therapeutic targets for fibrodysplasia ossificans progressiva.
    Katagiri T; Tsukamoto S; Kuratani M
    Bone; 2018 Apr; 109():241-250. PubMed ID: 28754575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP).
    Towler OW; Shore EM
    Dev Dyn; 2022 Jan; 251(1):164-177. PubMed ID: 34133058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel mutation of ALK2, L196P, found in the most benign case of fibrodysplasia ossificans progressiva activates BMP-specific intracellular signaling equivalent to a typical mutation, R206H.
    Ohte S; Shin M; Sasanuma H; Yoneyama K; Akita M; Ikebuchi K; Jimi E; Maruki Y; Matsuoka M; Namba A; Tomoda H; Okazaki Y; Ohtake A; Oda H; Owan I; Yoda T; Furuya H; Kamizono J; Kitoh H; Nakashima Y; Susami T; Haga N; Komori T; Katagiri T
    Biochem Biophys Res Commun; 2011 Apr; 407(1):213-8. PubMed ID: 21377447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation.
    van Dinther M; Visser N; de Gorter DJ; Doorn J; Goumans MJ; de Boer J; ten Dijke P
    J Bone Miner Res; 2010 Jun; 25(6):1208-15. PubMed ID: 19929436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-system involvement in a severe variant of fibrodysplasia ossificans progressiva (ACVR1 c.772G>A; R258G): A report of two patients.
    Kaplan FS; Kobori JA; Orellana C; Calvo I; Rosello M; Martinez F; Lopez B; Xu M; Pignolo RJ; Shore EM; Groppe JC
    Am J Med Genet A; 2015 Oct; 167A(10):2265-71. PubMed ID: 26097044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morpholino-Mediated Exon Skipping Targeting Human ACVR1/ALK2 for Fibrodysplasia Ossificans Progressiva.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():497-502. PubMed ID: 30171563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of New Therapeutic Agents for Fibrodysplasia Ossificans Progressiva.
    Luo Y; Alsamarah A; Zhang K; Hao J
    Curr Mol Med; 2016; 16(1):4-11. PubMed ID: 26695699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constitutively activated ALK2 and increased SMAD1/5 cooperatively induce bone morphogenetic protein signaling in fibrodysplasia ossificans progressiva.
    Fukuda T; Kohda M; Kanomata K; Nojima J; Nakamura A; Kamizono J; Noguchi Y; Iwakiri K; Kondo T; Kurose J; Endo K; Awakura T; Fukushi J; Nakashima Y; Chiyonobu T; Kawara A; Nishida Y; Wada I; Akita M; Komori T; Nakayama K; Nanba A; Maruki Y; Yoda T; Tomoda H; Yu PB; Shore EM; Kaplan FS; Miyazono K; Matsuoka M; Ikebuchi K; Ohtake A; Oda H; Jimi E; Owan I; Okazaki Y; Katagiri T
    J Biol Chem; 2009 Mar; 284(11):7149-56. PubMed ID: 18684712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A case of Fibrodysplasia Ossificans Progressiva associated with a novel variant of the ACVR1 gene.
    Cappato S; Traberg R; Gintautiene J; Zara F; Bocciardi R
    Mol Genet Genomic Med; 2021 Oct; 9(10):e1774. PubMed ID: 34347384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1.
    Aykul S; Huang L; Wang L; Das NM; Reisman S; Ray Y; Zhang Q; Rothman N; Nannuru KC; Kamat V; Brydges S; Troncone L; Johnsen L; Yu PB; Fazio S; Lees-Shepard J; Schutz K; Murphy AJ; Economides AN; Idone V; Hatsell SJ
    J Clin Invest; 2022 Jun; 132(12):. PubMed ID: 35511419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ACVR1-activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans.
    Yu X; Ton AN; Niu Z; Morales BM; Chen J; Braz J; Lai MH; Barruet E; Liu H; Cheung K; Ali S; Chan T; Bigay K; Ho J; Nikolli I; Hansberry S; Wentworth K; Kriegstein A; Basbaum A; Hsiao EC
    Pain; 2023 Jan; 164(1):43-58. PubMed ID: 35442931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP).
    Billings PC; Fiori JL; Bentwood JL; O'Connell MP; Jiao X; Nussbaum B; Caron RJ; Shore EM; Kaplan FS
    J Bone Miner Res; 2008 Mar; 23(3):305-13. PubMed ID: 17967130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An anti-ACVR1 antibody exacerbates heterotopic ossification by fibro-adipogenic progenitors in fibrodysplasia ossificans progressiva mice.
    Lees-Shepard JB; Stoessel SJ; Chandler JT; Bouchard K; Bento P; Apuzzo LN; Devarakonda PM; Hunter JW; Goldhamer DJ
    J Clin Invest; 2022 Jun; 132(12):. PubMed ID: 35503416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification.
    Culbert AL; Chakkalakal SA; Theosmy EG; Brennan TA; Kaplan FS; Shore EM
    Stem Cells; 2014 May; 32(5):1289-300. PubMed ID: 24449086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva.
    Lees-Shepard JB; Yamamoto M; Biswas AA; Stoessel SJ; Nicholas SE; Cogswell CA; Devarakonda PM; Schneider MJ; Cummins SM; Legendre NP; Yamamoto S; Kaartinen V; Hunter JW; Goldhamer DJ
    Nat Commun; 2018 Feb; 9(1):471. PubMed ID: 29396429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ACVR1 p.Q207E causes classic fibrodysplasia ossificans progressiva and is functionally distinct from the engineered constitutively active ACVR1 p.Q207D variant.
    Haupt J; Deichsel A; Stange K; Ast C; Bocciardi R; Ravazzolo R; Di Rocco M; Ferrari P; Landi A; Kaplan FS; Shore EM; Reissner C; Seemann P
    Hum Mol Genet; 2014 Oct; 23(20):5364-77. PubMed ID: 24852373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activin A forms a non-signaling complex with ACVR1 and type II Activin/BMP receptors via its finger 2 tip loop.
    Aykul S; Corpina RA; Goebel EJ; Cunanan CJ; Dimitriou A; Kim HJ; Zhang Q; Rafique A; Leidich R; Wang X; McClain J; Jimenez J; Nannuru KC; Rothman NJ; Lees-Shepard JB; Martinez-Hackert E; Murphy AJ; Thompson TB; Economides AN; Idone V
    Elife; 2020 Jun; 9():. PubMed ID: 32515349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.