BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29307801)

  • 1. Designing cross-linked xylanase aggregates for bioconversion of agroindustrial waste biomass towards potential production of nutraceuticals.
    Hero JS; Romero CM; Pisa JH; Perotti NI; Olivaro C; Martinez MA
    Int J Biol Macromol; 2018 May; 111():229-236. PubMed ID: 29307801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes.
    Bhattacharya A; Pletschke BI
    Enzyme Microb Technol; 2014; 61-62():17-27. PubMed ID: 24910332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products.
    Hero JS; Pisa JH; Romero CM; Nordberg Karlsson E; Linares-Pastén JA; Martinez MA
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6759-6778. PubMed ID: 34458936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrowastes as Feedstock for the Production of Endo-β-Xylanase from Cohnella sp. Strain AR92.
    Pisa JH; Manfredi AP; Perotti NI; Romero HG; Breccia JD; Martínez MA
    J Mol Microbiol Biotechnol; 2017; 27(5):277-288. PubMed ID: 29166641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion.
    Jia J; Zhang W; Yang Z; Yang X; Wang N; Yu X
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28208644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse.
    de Almeida MN; Guimarães VM; Falkoski DL; Paes GB; Ribeiro JI; Visser EM; Alfenas RF; Pereira OL; de Rezende ST
    Appl Biochem Biotechnol; 2014 Feb; 172(3):1332-46. PubMed ID: 24170331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategic approach for direct recovery and stabilization of Fusarium sp. ICT SAC1 cutinase from solid state fermented broth by carrier free cross-linked enzyme aggregates.
    Chaudhari SA; Singhal RS
    Int J Biol Macromol; 2017 May; 98():610-621. PubMed ID: 28192137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus.
    Brienzo M; Carvalho W; Milagres AM
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1195-205. PubMed ID: 20066571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of Aspergillus niger xylanase on chitosan using dialdehyde starch as a coupling agent.
    Chen H; Liu L; Lv S; Liu X; Wang M; Song A; Jia X
    Appl Biochem Biotechnol; 2010 Sep; 162(1):24-32. PubMed ID: 19823778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching.
    Peixoto-Nogueira Sde C; Michelin M; Betini JH; Jorge JA; Terenzi HF; Polizeli Mde L
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):149-55. PubMed ID: 18923855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass.
    Ghio S; Insani EM; Piccinni FE; Talia PM; Grasso DH; Campos E
    Microbiol Res; 2016; 186-187():16-26. PubMed ID: 27242139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-immobilization of fungal endo-xylanase and α-L-arabinofuranosidase in glyoxyl agarose for improved hydrolysis of arabinoxylan.
    Damásio AR; Pessela BC; da Silva TM; Guimarães LH; Jorge JA; Guisán JM; Polizeli Mde L
    J Biochem; 2013 Sep; 154(3):275-80. PubMed ID: 23756760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic degradation of algal 1,3-xylan: from synergism of lytic polysaccharide monooxygenases with β-1,3-xylanases to their intelligent immobilization on biomimetic silica nanoparticles.
    Cai L; Liu X; Qiu Y; Liu M; Zhang G
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5347-5360. PubMed ID: 32318768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane.
    Kim JY; Nong G; Rice JD; Gallo M; Preston JF; Altpeter F
    Plant Mol Biol; 2017 Mar; 93(4-5):465-478. PubMed ID: 28005227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Thermal and Reusability Properties of Xylanase by Genipin Cross-Linking to Magnetic Chitosan Particles.
    Gracida J; Arredondo-Ochoa T; García-Almendárez BE; Escamilla-García M; Shirai K; Regalado C; Amaro-Reyes A
    Appl Biochem Biotechnol; 2019 Jun; 188(2):395-409. PubMed ID: 30478822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability.
    Mehnati-Najafabadi V; Taheri-Kafrani A; Bordbar AK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):418-425. PubMed ID: 28888544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.
    Rojas-Rejón ÓA; Poggi-Varaldo HM; Ramos-Valdivia AC; Ponce-Noyola T; Cristiani-Urbina E; Martínez A; de la Torre M
    Biotechnol Prog; 2016 Mar; 32(2):321-6. PubMed ID: 26701152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylooligosaccharides production from a sugarcane biomass mixture: Effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies.
    Ávila PF; Franco Cairo JPL; Damasio A; Forte MBS; Goldbeck R
    Food Res Int; 2020 Feb; 128():108702. PubMed ID: 31955780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes.
    Hwangbo M; Tran JL; Chu KH
    Sci Total Environ; 2019 Jan; 647():806-813. PubMed ID: 30096670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylanase production from Bacillus aerophilus KGJ2 and its application in xylooligosaccharides preparation.
    Gowdhaman D; Manaswini VS; Jayanthi V; Dhanasri M; Jeyalakshmi G; Gunasekar V; Sugumaran KR; Ponnusami V
    Int J Biol Macromol; 2014 Mar; 64():90-8. PubMed ID: 24296408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.