These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 29307801)
61. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Jagtap S; Deshmukh RA; Menon S; Das S Bioresour Technol; 2017 Dec; 245(Pt A):283-288. PubMed ID: 28892703 [TBL] [Abstract][Full Text] [Related]
62. Insights into the mechanism of enzymatic hydrolysis of xylan. Moreira LR; Filho EX Appl Microbiol Biotechnol; 2016 Jun; 100(12):5205-14. PubMed ID: 27112349 [TBL] [Abstract][Full Text] [Related]
63. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Rodríguez-Zúñiga UF; Bertucci Neto V; Couri S; Crestana S; Farinas CS Appl Biochem Biotechnol; 2014 Mar; 172(5):2348-62. PubMed ID: 24363237 [TBL] [Abstract][Full Text] [Related]
64. Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature. Jampala P; Preethi M; Ramanujam S; Harish BS; Uppuluri KB; Anbazhagan V Int J Biol Macromol; 2017 Feb; 95():843-849. PubMed ID: 27940337 [TBL] [Abstract][Full Text] [Related]
65. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production. Lau MJ; Lau MW; Gunawan C; Dale BE Appl Biochem Biotechnol; 2010 Nov; 162(7):1847-57. PubMed ID: 20419480 [TBL] [Abstract][Full Text] [Related]
66. A novel all-in-one strategy for purification and immobilization of β-1,3-xylanase directly from cell lysate as active and recyclable nanobiocatalyst. Cai L; Chu Y; Liu X; Qiu Y; Ge Z; Zhang G Microb Cell Fact; 2021 Feb; 20(1):37. PubMed ID: 33549102 [TBL] [Abstract][Full Text] [Related]
67. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations. Prior BA; Day DF Appl Biochem Biotechnol; 2008 Mar; 146(1-3):151-64. PubMed ID: 18421595 [TBL] [Abstract][Full Text] [Related]
68. Immobilization of xylanase on poly (ethylene glycol) methyl ether 5000 and its self-extractive bioconversion for the production of xylo-oligosaccharides. Li X; Shan Z; Song X; Ouyang J; Xu Y; Yong Q; Yu S Appl Biochem Biotechnol; 2014 Feb; 172(4):2022-9. PubMed ID: 24326682 [TBL] [Abstract][Full Text] [Related]
69. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Oliveira LA; Porto AL; Tambourgi EB Bioresour Technol; 2006 Apr; 97(6):862-7. PubMed ID: 15953719 [TBL] [Abstract][Full Text] [Related]
70. Nano-immobilized cellulases for biomass processing with application in biofuel production. Abraham RE; Puri M Methods Enzymol; 2020; 630():327-346. PubMed ID: 31931992 [TBL] [Abstract][Full Text] [Related]
71. Simultaneous refolding, purification and immobilization of xylanase with multi-walled carbon nanotubes. Shah S; Gupta MN Biochim Biophys Acta; 2008 Feb; 1784(2):363-7. PubMed ID: 18155676 [TBL] [Abstract][Full Text] [Related]
72. Application of free and immobilized novel bifunctional biocatalyst in biotransformation of recalcitrant lignocellulosic biomass. Ariaeenejad S; Kavousi K; Maleki M; Motamedi E; Moosavi-Movahedi AA; Hosseini Salekdeh G Chemosphere; 2021 Dec; 285():131412. PubMed ID: 34329139 [TBL] [Abstract][Full Text] [Related]
73. Optimized preparation and characterization of CLEA-lipase from cocoa pod husk. Khanahmadi S; Yusof F; Amid A; Mahmod SS; Mahat MK J Biotechnol; 2015 May; 202():153-61. PubMed ID: 25481099 [TBL] [Abstract][Full Text] [Related]
74. Production and characterization of xylanase from a beta-amylolytic strain of Bacillus megaterium. Ray RR; Nanda G Microbios; 1997; 90(362):7-16. PubMed ID: 9301068 [TBL] [Abstract][Full Text] [Related]
75. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885 [TBL] [Abstract][Full Text] [Related]
76. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity. García-Huante Y; Cayetano-Cruz M; Santiago-Hernández A; Cano-Ramírez C; Marsch-Moreno R; Campos JE; Aguilar-Osorio G; Benitez-Cardoza CG; Trejo-Estrada S; Hidalgo-Lara ME Extremophiles; 2017 Jan; 21(1):175-186. PubMed ID: 27900528 [TBL] [Abstract][Full Text] [Related]
77. Low degree of polymerization xylooligosaccharides production from almond shell using immobilized nano-biocatalyst. Singh RD; Talekar S; Muir J; Arora A Enzyme Microb Technol; 2019 Nov; 130():109368. PubMed ID: 31421728 [TBL] [Abstract][Full Text] [Related]
78. Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass. Bhalla A; Bischoff KM; Sani RK Front Bioeng Biotechnol; 2015; 3():84. PubMed ID: 26137456 [TBL] [Abstract][Full Text] [Related]
79. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110 [TBL] [Abstract][Full Text] [Related]
80. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Lara CA; Santos RO; Cadete RM; Ferreira C; Marques S; Gírio F; Oliveira ES; Rosa CA; Fonseca C Antonie Van Leeuwenhoek; 2014 Jun; 105(6):1107-19. PubMed ID: 24748334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]