BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2930782)

  • 1. Inhibition of red cell Ca2+-dependent K+ channels by snake venoms.
    Alvarez J; García-Sancho J
    Biochim Biophys Acta; 1989 Apr; 980(2):134-8. PubMed ID: 2930782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of several viper venoms on prothrombin Padua.
    Girolami A; Giovanni P; Virgolini L; Zucchetto M
    Blut; 1975 Sep; 31(3):155-60. PubMed ID: 1174715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+ channels.
    Abia A; Lobatón CD; Moreno A; García-Sancho J
    Biochim Biophys Acta; 1986 Apr; 856(2):403-7. PubMed ID: 2420362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal rearrangements in human red blood cells induced by snake venoms: light microscopy of shapes and NMR studies of membrane function.
    Yau TW; Kuchel RP; Koh JM; Szekely D; Mirtschin PJ; Kuchel PW
    Cell Biol Int; 2012 Jan; 36(1):87-97. PubMed ID: 21933154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom.
    Tan CH; Tan KY; Tan NH
    J Proteomics; 2016 Jul; 144():33-8. PubMed ID: 27282922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of human red blood cell membrane phospholipids to snake venom phospholipases. A--II. Hydrolysis of substrates in intact and resealed cells by phospholipase from ringhals (Hemachatus haemachates) venom: effect of calcium ions.
    Barzilay M; Kaminsky E; Condrea E
    Toxicon; 1978; 16(2):153-61. PubMed ID: 635930
    [No Abstract]   [Full Text] [Related]  

  • 7. Hemolysis of washed human red cells by various snake venoms in the presence of albumin and Ca2+.
    Gul S; Khara JS; Smith AD
    Toxicon; 1974 May; 12(3):311-5. PubMed ID: 4458112
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure and function of neuro- and myotoxic phospholipases: modification with ethoxyformic anhydride of notechis II-5 from the venom of the Australian tiger snake Notechis scutatus scutatus.
    Halpert J
    Adv Cytopharmacol; 1979; 3():45-62. PubMed ID: 573053
    [No Abstract]   [Full Text] [Related]  

  • 9. Endogenous thrombin potential as a novel method for the characterization of procoagulant snake venoms and the efficacy of antivenom.
    Isbister GK; Woods D; Alley S; O'Leary MA; Seldon M; Lincz LF
    Toxicon; 2010 Aug; 56(1):75-85. PubMed ID: 20338189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scorpion venom inhibits selectively Ca2+-activated K+ channels in situ.
    Leneveu E; Simonneau M
    FEBS Lett; 1986 Dec; 209(2):165-8. PubMed ID: 2431925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of venom-antivenom (VAV) immunocomplexes in vitro as a measure of antivenom efficacy.
    O'Leary MA; Isbister GK
    Toxicon; 2014 Jan; 77():125-32. PubMed ID: 24252422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Sendai virus by various snake venom.
    Borkow G; Ovadia M
    Life Sci; 1992; 51(16):1261-7. PubMed ID: 1328790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of drugs on the lethality in mice of the venoms and neurotoxins from sundry snakes.
    Crosland RD
    Toxicon; 1991; 29(6):613-31. PubMed ID: 1926164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinine inhibits multiple Na+ and K+ transport mechanisms in Ehrlich ascites tumor cells.
    Smith TC; Levinson C
    Biochim Biophys Acta; 1989 Jan; 978(1):169-75. PubMed ID: 2914127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of an isolated toxin from Australian tiger snake (Notechis scutatus scutatus) venom at the mammalian neuromuscular junction.
    Harris JB; Karlsson E; Thesleff S
    Br J Pharmacol; 1973 Jan; 47(1):141-6. PubMed ID: 4352085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphero-echinocytosis of human red blood cells caused by snake, red-back spider, bee and blue-ringed octopus venoms and its inhibition by snake sera.
    Flachsenberger W; Leigh CM; Mirtschin PJ
    Toxicon; 1995 Jun; 33(6):791-7. PubMed ID: 7676470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades.
    Jesupret C; Baumann K; Jackson TN; Ali SA; Yang DC; Greisman L; Kern L; Steuten J; Jouiaei M; Casewell NR; Undheim EA; Koludarov I; Debono J; Low DH; Rossi S; Panagides N; Winter K; Ignjatovic V; Summerhayes R; Jones A; Nouwens A; Dunstan N; Hodgson WC; Winkel KD; Monagle P; Fry BG
    J Proteomics; 2014 Jun; 105():285-94. PubMed ID: 24434587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postsynaptic and musculotropic effects of notexin, a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake).
    Lee CY; Chen YM; Karlsson E
    Toxicon; 1976; 14(6):493-4. PubMed ID: 1014037
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation and amino acid sequence of a neurotoxic phospholipase A from the venom of the Australian tiger snake Notechis scutatus scutatus.
    Halpert J; Eaker D
    J Biol Chem; 1976 Dec; 251(23):7343-7. PubMed ID: 1002692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of simple standard assay procedures for the characterization of snake venom.
    Theakston RD; Reid HA
    Bull World Health Organ; 1983; 61(6):949-56. PubMed ID: 6609011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.