BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 2930787)

  • 1. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins.
    Lepock JR; Frey HE; Bayne H; Markus J
    Biochim Biophys Acta; 1989 Apr; 980(2):191-201. PubMed ID: 2930787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Chong PL; Ravindra R; Khurana M; English V; Winter R
    Biophys J; 2005 Sep; 89(3):1841-9. PubMed ID: 15980181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock.
    Lepock JR; Frey HE; Ritchie KP
    J Cell Biol; 1993 Sep; 122(6):1267-76. PubMed ID: 8376462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low levels of the pesticide, delta-hexachlorocyclohexane, lyses human erythrocytes and alters the organization of membrane lipids and proteins as revealed by Raman spectroscopy.
    Verma SP; Singhal A
    Biochim Biophys Acta; 1991 Nov; 1070(1):265-73. PubMed ID: 1721541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response.
    Lepock JR; Frey HE; Rodahl AM; Kruuv J
    J Cell Physiol; 1988 Oct; 137(1):14-24. PubMed ID: 3170654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrofluorometric and microcalorimetric study of the thermal poration relevant to the mechanism of thermohaemolysis.
    Ivanov IT; Todorova R; Zlatanov I
    Int J Hyperthermia; 1999; 15(1):29-43. PubMed ID: 10193755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of hyperthermia-induced haemolysis of human erythrocytes by photodynamic treatment. Evidence for the involvement of the anion transporter in this synergistic interaction.
    Prinsze C; Tijssen K; Dubbelman TM; Van Steveninck J
    Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):183-8. PubMed ID: 1713033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles.
    Lutz HU; Liu SC; Palek J
    J Cell Biol; 1977 Jun; 73(3):548-60. PubMed ID: 873988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion exchanger and the resistance against thermal haemolysis.
    Ivanov IT; Zheleva A; Zlatanov I
    Int J Hyperthermia; 2011; 27(3):286-96. PubMed ID: 21501030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of temperature on lysis of human erythrocytes by palmitic acid].
    Zavodnik IB; Piletskaia TP; Stepuro II
    Biofizika; 1991; 36(6):1056-60. PubMed ID: 1809385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK.
    Montgomery D; Jordan R; McMacken R; Freire E
    J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of dilauroylglycerophosphocholine with erythrocytes: pre-hemolytic events and hemolysis.
    Tanaka Y; Inoue K; Nojima S
    Biochim Biophys Acta; 1980 Jul; 600(1):126-39. PubMed ID: 7397164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury.
    He X; Wolkers WF; Crowe JH; Swanlund DJ; Bischof JC
    Ann Biomed Eng; 2004 Oct; 32(10):1384-98. PubMed ID: 15535056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nuclear matrix is a thermolabile cellular structure.
    Lepock JR; Frey HE; Heynen ML; Senisterra GA; Warters RL
    Cell Stress Chaperones; 2001 Apr; 6(2):136-47. PubMed ID: 11599575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal inactivation of membrane proteins, volume-dependent Na+, K(+)-cotransport, and protein kinase C activator-induced changes of the shape of human and rat erythrocytes.
    Shnyrov VL; Orlov SN; Zhadan GG; Pokudin NI
    Biomed Biochim Acta; 1990; 49(6):445-53. PubMed ID: 2275718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A differential scanning calorimetric study of the thermal denaturation of bovine beta-lactoglobulin. Thermal behaviour at temperatures up to 100 degrees C.
    de Wit JN; Swinkels GA
    Biochim Biophys Acta; 1980 Jul; 624(1):40-50. PubMed ID: 7407243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heat on the circular dichroism of spectrin in hereditary pyropoikilocytosis.
    Chang K; Williamson JR; Zarkowsky HS
    J Clin Invest; 1979 Jul; 64(1):326-8. PubMed ID: 447859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of high-pressure-induced hemolysis of human erythrocytes by preincubation at 49 degrees C.
    Yamaguchi T; Miyamoto J; Terada S
    J Biochem; 2001 Nov; 130(5):597-603. PubMed ID: 11686921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Structural reorganizations of the lipids and proteins of erythrocyte membranes under the action of low temperatures].
    Gulevskiĭ AK; Riazantsev VV; Belous AM
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1990; (5):29-36. PubMed ID: 2168217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Thermal transitions in erythrocyte membranes revealed by their permeability to ANS].
    Chernitskiĭ EA; Vorobeĭ AV; Konev SV
    Biofizika; 1978; 23(1):80-4. PubMed ID: 623828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.