BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2930791)

  • 1. Dicarboxylate transport in human placental brush-border membrane vesicles.
    Ogin C; Grassl SM
    Biochim Biophys Acta; 1989 Apr; 980(2):248-54. PubMed ID: 2930791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline transport in human placental brush-border membrane vesicles.
    Grassl SM
    Biochim Biophys Acta; 1994 Aug; 1194(1):203-13. PubMed ID: 8075137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human placental brush-border membrane Na(+)-biotin cotransport.
    Grassl SM
    J Biol Chem; 1992 Sep; 267(25):17760-5. PubMed ID: 1381353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiamine transport in human placental brush border membrane vesicles.
    Grassl SM
    Biochim Biophys Acta; 1998 May; 1371(2):213-22. PubMed ID: 9630634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succinate and citrate transport in renal basolateral and brush-border membranes.
    Wright SH; Wunz TM
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-gradient-driven, high-affinity, uphill transport of succinate in human placental brush-border membrane vesicles.
    Ganapathy V; Ganapathy ME; Tiruppathi C; Miyamoto Y; Mahesh VB; Leibach FH
    Biochem J; 1988 Jan; 249(1):179-84. PubMed ID: 3342005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human placental brush-border membrane Na(+)-pantothenate cotransport.
    Grassl SM
    J Biol Chem; 1992 Nov; 267(32):22902-6. PubMed ID: 1429639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dicarboxylate transport in renal basolateral and brush-border membrane vesicles.
    Kim YK; Jung JS; Lee SH
    Can J Physiol Pharmacol; 1992 Jan; 70(1):106-12. PubMed ID: 1581843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate transport in human placental brush-border membrane vesicles.
    Grassl SM
    Biochim Biophys Acta; 1996 Jun; 1282(1):115-23. PubMed ID: 8679648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles.
    Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V
    J Biol Chem; 1988 Sep; 263(27):13823-30. PubMed ID: 2843538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+ transport by human placental brush border membranes: are there several mechanisms?
    Brunette MG; Leclerc ; Claveau D
    J Cell Physiol; 1996 Apr; 167(1):72-80. PubMed ID: 8698842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye.
    Wright SH; Krasne S; Kippen I; Wright EM
    Biochim Biophys Acta; 1981 Feb; 640(3):767-78. PubMed ID: 7213704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-H+ exchanger of human placental brush-border membrane: identification and characterization.
    Balkovetz DF; Leibach FH; Mahesh VB; Devoe LD; Cragoe EJ; Ganapathy V
    Am J Physiol; 1986 Dec; 251(6 Pt 1):C852-60. PubMed ID: 3024497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles.
    Zimmerli B; O'Neill B; Meier PJ
    Pflugers Arch; 1992 Jul; 421(4):329-35. PubMed ID: 1408656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of tricarballylate by intestinal brush-border membrane vesicles from steers.
    Wolffram S; Zimmermann W; Scharrer E
    Exp Physiol; 1993 Jul; 78(4):473-84. PubMed ID: 8398101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.
    Wright SH; Kippen I; Wright EM
    J Biol Chem; 1982 Feb; 257(4):1773-8. PubMed ID: 7056744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-proton exchange in human ileal brush-border membrane vesicles.
    Ramaswamy K; Harig JM; Kleinman JG; Harris MS; Barry JA
    Biochim Biophys Acta; 1989 Jun; 981(2):193-9. PubMed ID: 2543457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P; Krämer R; Unden G
    Eur J Biochem; 1994 Jun; 222(2):605-14. PubMed ID: 8020497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ and H+ transport in human jejunal brush-border membrane vesicles.
    Kleinman JG; Harig JM; Barry JA; Ramaswamy K
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G206-11. PubMed ID: 2841867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.