These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29308132)

  • 1. Mesoporous inorganic salts with crystal defects: unusual catalysts and catalyst supports.
    Kang X; Shang W; Zhu Q; Zhang J; Jiang T; Han B; Wu Z; Li Z; Xing X
    Chem Sci; 2015 Mar; 6(3):1668-1675. PubMed ID: 29308132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable yolk-structured catalysts towards aqueous levulinic acid hydrogenation within a single Ru nanoparticle anchored inside the mesoporous shell of hollow carbon spheres.
    Yang Y; Zhang S; Gu L; Shao S; Li W; Zeng D; Yang F; Hao S
    J Colloid Interface Sci; 2020 Sep; 576():394-403. PubMed ID: 32460100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts.
    Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Biochars as Supports for Ru/C Catalysts: Tunable and Efficient Materials for γ-Valerolactone Production.
    Bounoukta CE; Megías-Sayago C; Navarro JC; Ammari F; Ivanova S; Centeno MÁ; Odriozola JA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of levulinic acid to γ-valerolactone over Ru/Al
    Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L
    RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel.
    Kang X; Zhang J; Shang W; Wu T; Zhang P; Han B; Wu Z; Mo G; Xing X
    J Am Chem Soc; 2014 Mar; 136(10):3768-71. PubMed ID: 24575937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Oxide-Derived Ru Catalyst for Ultra-Efficient Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Wang S; Zhuang Z; Chen X; Wang Y; Li X; Yang M; Wu Y; Peng Q; Chen C; Li Y
    Small; 2024 Feb; 20(7):e2306227. PubMed ID: 37806748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production.
    Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L
    ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured Nickel/Silica Catalysts for Continuous Flow Conversion of Levulinic Acid to γ-Valerolactone.
    Mallesham B; Sudarsanam P; Venkata Shiva Reddy B; Govinda Rao B; Reddy BM
    ACS Omega; 2018 Dec; 3(12):16839-16849. PubMed ID: 31458310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogenation of levulinic acid to γ-valerolactone over hydrophobic Ru@HCP catalysts.
    Gong X; Feng X; Cao J; Wang Y; Zheng X; Yu W; Wang X; Shi S
    Chem Commun (Camb); 2023 Dec; 59(99):14717-14720. PubMed ID: 37999928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source.
    Feng J; Gu X; Xue Y; Han Y; Lu X
    Sci Total Environ; 2018 Aug; 633():426-432. PubMed ID: 29579653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amine-promoted Ru
    Yang Y; Yang F; Wang H; Zhou B; Hao S
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):167-176. PubMed ID: 32771728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.
    Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P
    ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media.
    Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G
    Front Chem; 2020; 8():221. PubMed ID: 32373576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ru Single Atoms on One-Dimensional CF@g-C
    Yang Y; Zhang S; Gu L; Hao S
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO
    Wojciechowska J; Jędrzejczyk M; Grams J; Keller N; Ruppert AM
    ChemSusChem; 2019 Feb; 12(3):639-650. PubMed ID: 30350463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-doped graphene supported Ni as an efficient and stable catalyst for levulinic acid hydrogenation.
    Ding Q; Wang Y; Ma L
    Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 33887710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis.
    Córdova-Pérez GE; Cortez-Elizalde J; Silahua-Pavón AA; Cervantes-Uribe A; Arévalo-Pérez JC; Cordero-Garcia A; de Los Monteros AEE; Espinosa-González CG; Godavarthi S; Ortiz-Chi F; Guerra-Que Z; Torres-Torres JG
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.