These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29308250)

  • 1. A brittle star-like robot capable of immediately adapting to unexpected physical damage.
    Kano T; Sato E; Ono T; Aonuma H; Matsuzaka Y; Ishiguro A
    R Soc Open Sci; 2017 Dec; 4(12):171200. PubMed ID: 29308250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Coordination of Flexible Limbs: Decentralized Control Scheme for Inter- and Intra-Limb Coordination in Brittle Stars' Locomotion.
    Kano T; Kanauchi D; Ono T; Aonuma H; Ishiguro A
    Front Neurorobot; 2019; 13():104. PubMed ID: 31920614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decentralized Control Mechanism for Determination of Moving Direction in Brittle Stars With Penta-Radially Symmetric Body.
    Kano T; Kanauchi D; Aonuma H; Clark EG; Ishiguro A
    Front Neurorobot; 2019; 13():66. PubMed ID: 31507399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of the ophiuroid nerve ring: how a decentralized nervous system controls coordinated locomotion.
    Clark EG; Kanauchi D; Kano T; Aonuma H; Briggs DEG; Ishiguro A
    J Exp Biol; 2019 Jan; 222(Pt 2):. PubMed ID: 30464042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general model of locomotion of brittle stars with a variable number of arms.
    Wakita D; Kagaya K; Aonuma H
    J R Soc Interface; 2020 Jan; 17(162):20190374. PubMed ID: 31910773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decentralized control scheme for myriapod robot inspired by adaptive and resilient centipede locomotion.
    Yasui K; Sakai K; Kano T; Owaki D; Ishiguro A
    PLoS One; 2017; 12(2):e0171421. PubMed ID: 28152103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methodological exploration to study 2D arm kinematics in Ophiuroidea (Echinodermata).
    Goharimanesh M; Stöhr S; Ghassemzadeh F; Mirshamsi O; Adriaens D
    Front Zool; 2023 Apr; 20(1):15. PubMed ID: 37085882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural origins of brittle star arm kinematics: An integrated tomographic, additive manufacturing, and parametric modeling-based approach.
    Tomholt L; Friesen LJ; Berdichevsky D; Fernandes MC; Pierre C; Wood RJ; Weaver JC
    J Struct Biol; 2020 Jul; 211(1):107481. PubMed ID: 32088334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sometimes two arms are enough--an unusual life-stage in brittle stars (Echinodermata: Ophiuroidea).
    Stöhr S; Alme Ø
    Zootaxa; 2015 Aug; 3994(3):425-32. PubMed ID: 26250282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphogenesis and histogenesis during the arm regeneration in a basket star Astrocladus dofleini (Euryalida, Ophiuroidea, Echinodermata).
    Okanishi M; Kohtsuka H; Miura T
    J Morphol; 2021 Feb; 282(2):205-216. PubMed ID: 33159480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue Extract from Brittle Star Undergoing Arm Regeneration Promotes Wound Healing in Rat.
    Afshar A; Khoradmehr A; Nowzari F; Baghban N; Zare M; Najafi M; Keshavarzi SZ; Zendehboudi F; Mohebbi G; Barmak A; Mohajer F; Basouli N; Keshtkar M; Iraji A; Sari Aslani F; Irajie C; Nabipour I; Mahmudpour M; Tanideh N; Tamadon A
    Mar Drugs; 2023 Jun; 21(7):. PubMed ID: 37504912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Getting around when you're round: quantitative analysis of the locomotion of the blunt-spined brittle star, Ophiocoma echinata.
    Astley HC
    J Exp Biol; 2012 Jun; 215(Pt 11):1923-9. PubMed ID: 22573771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ambidextrous STarfish-Inspired Exploration and Reconnaissance Robot (The ASTER-bot).
    Bell MA; Weaver JC; Wood RJ
    Soft Robot; 2022 Oct; 9(5):991-1000. PubMed ID: 34978920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae.
    Burns G; Thorndyke MC; Peck LS; Clark MS
    Mar Genomics; 2013 Mar; 9():9-15. PubMed ID: 23904059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved genetic background for pluteus arm development in brittle stars and sea urchin.
    Morino Y; Koga H; Wada H
    Evol Dev; 2016; 18(2):89-95. PubMed ID: 26773338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decentralized control mechanism underlying interlimb coordination of millipedes.
    Kano T; Sakai K; Yasui K; Owaki D; Ishiguro A
    Bioinspir Biomim; 2017 Apr; 12(3):036007. PubMed ID: 28375850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different Synchrony in Rhythmic Movement Caused by Morphological Difference between Five- and Six-armed Brittle Stars.
    Wakita D; Hayase Y; Aonuma H
    Sci Rep; 2019 Jun; 9(1):8298. PubMed ID: 31165756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes.
    Kano T; Ishiguro A
    Integr Comp Biol; 2020 Jul; 60(1):232-247. PubMed ID: 32215573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Interlimb Coordination Mechanism for Hexapod Locomotion Based on Active Load Sensing.
    Fukuhara A; Suda W; Kano T; Kobayashi R; Ishiguro A
    Front Neurorobot; 2022; 16():645683. PubMed ID: 35211001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.