These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29308296)

  • 1. Evaluating Automatic Methods to Extract Patients' Supplement Use from Clinical Reports.
    Fan Y; He L; Zhang R
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2017 Nov; 2017():1258-1261. PubMed ID: 29308296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using natural language processing methods to classify use status of dietary supplements in clinical notes.
    Fan Y; Zhang R
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):51. PubMed ID: 30066648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Use Status for Dietary Supplements in Clinical Notes.
    Fan Y; He L; Zhang R
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2016 Dec; 2016():1054-1061. PubMed ID: 28824824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classifying Supplement Use Status in Clinical Notes.
    Fan Y; He L; Pakhomov SVS; Melton GB; Zhang R
    AMIA Jt Summits Transl Sci Proc; 2017; 2017():493-501. PubMed ID: 28815149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient Dietary Supplements Use: Do Results from Natural Language Processing of Clinical Notes Agree with Survey Data?
    Redd D; Workman TE; Shao Y; Cheng Y; Tekle S; Garvin JH; Brandt CA; Zeng-Treitler Q
    Med Sci (Basel); 2023 May; 11(2):. PubMed ID: 37367736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Signals of Interactions Between Warfarin and Dietary Supplements in Electronic Health Records.
    Fan Y; Adam TJ; McEwan R; Pakhomov SV; Melton GB; Zhang R
    Stud Health Technol Inform; 2017; 245():370-374. PubMed ID: 29295118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cohort Selection for Clinical Trials From Longitudinal Patient Records: Text Mining Approach.
    Spasic I; Krzeminski D; Corcoran P; Balinsky A
    JMIR Med Inform; 2019 Oct; 7(4):e15980. PubMed ID: 31674914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering Fine-grained Sentiment in Suicide Notes.
    Wang W; Chen L; Tan M; Wang S; Sheth AP
    Biomed Inform Insights; 2012; 5(Suppl. 1):137-45. PubMed ID: 22879770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models.
    Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P
    JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDF text classification to leverage information extraction from publication reports.
    Bui DD; Del Fiol G; Jonnalagadda S
    J Biomed Inform; 2016 Jun; 61():141-8. PubMed ID: 27044929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems.
    Szlosek DA; Ferrett J
    EGEMS (Wash DC); 2016; 4(3):1222. PubMed ID: 27683664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Determination of the Need for Intravenous Contrast in Musculoskeletal MRI Examinations Using IBM Watson's Natural Language Processing Algorithm.
    Trivedi H; Mesterhazy J; Laguna B; Vu T; Sohn JH
    J Digit Imaging; 2018 Apr; 31(2):245-251. PubMed ID: 28924815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging Electronic Dental Record Data to Classify Patients Based on Their Smoking Intensity.
    Patel J; Siddiqui Z; Krishnan A; Thyvalikakath TP
    Methods Inf Med; 2018 Nov; 57(5-06):253-260. PubMed ID: 30875704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Safety Incident Taxonomy Performance on C4.5 Decision Tree and Random Forest.
    Gupta J; Patrick J; Poon S
    Stud Health Technol Inform; 2019 Aug; 266():83-88. PubMed ID: 31397306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying clinical notes with pain assessment using machine learning.
    Fodeh SJ; Finch D; Bouayad L; Luther SL; Ling H; Kerns RD; Brandt C
    Med Biol Eng Comput; 2018 Jul; 56(7):1285-1292. PubMed ID: 29280092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic de-identification of French clinical records: comparison of rule-based and machine-learning approaches.
    Grouin C; Zweigenbaum P
    Stud Health Technol Inform; 2013; 192():476-80. PubMed ID: 23920600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated identification of wound information in clinical notes of patients with heart diseases: Developing and validating a natural language processing application.
    Topaz M; Lai K; Dowding D; Lei VJ; Zisberg A; Bowles KH; Zhou L
    Int J Nurs Stud; 2016 Dec; 64():25-31. PubMed ID: 27668855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.