These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29308352)

  • 1. Impact of protein-ligand solvation and desolvation on transition state thermodynamic properties of adenosine A
    Deganutti G; Zhukov A; Deflorian F; Federico S; Spalluto G; Cooke RM; Moro S; Mason JS; Bortolato A
    In Silico Pharmacol; 2017; 5(1):16. PubMed ID: 29308352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics.
    Badaoui M; Buigues PJ; Berta D; Mandana GM; Gu H; Földes T; Dickson CJ; Hornak V; Kato M; Molteni C; Parsons S; Rosta E
    J Chem Theory Comput; 2022 Apr; 18(4):2543-2555. PubMed ID: 35195418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case.
    Bortolato A; Deflorian F; Weiss DR; Mason JS
    J Chem Inf Model; 2015 Sep; 55(9):1857-66. PubMed ID: 26335976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of water transfer energy to protein-ligand association and dissociation barriers: Watermap analysis of a series of p38α MAP kinase inhibitors.
    Pearlstein RA; Sherman W; Abel R
    Proteins; 2013 Sep; 81(9):1509-26. PubMed ID: 23468227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Supervised Molecular Dynamics Approach to Unbiased Ligand-Protein Unbinding.
    Deganutti G; Moro S; Reynolds CA
    J Chem Inf Model; 2020 Mar; 60(3):1804-1817. PubMed ID: 32126172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of protein-ligand unbinding: Predicting pathways, rates, and rate-limiting steps.
    Tiwary P; Limongelli V; Salvalaglio M; Parrinello M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):E386-91. PubMed ID: 25605901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance.
    Bocquet N; Kohler J; Hug MN; Kusznir EA; Rufer AC; Dawson RJ; Hennig M; Ruf A; Huber W; Huber S
    Biochim Biophys Acta; 2015 May; 1848(5):1224-33. PubMed ID: 25725488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.
    Casasnovas R; Limongelli V; Tiwary P; Carloni P; Parrinello M
    J Am Chem Soc; 2017 Apr; 139(13):4780-4788. PubMed ID: 28290199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Molecular Interactions and Protein Rearrangement in the Dissociation Kinetics of p38α MAP Kinase Type-I/II/III Inhibitors.
    You W; Chang CA
    J Chem Inf Model; 2018 May; 58(5):968-981. PubMed ID: 29620886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
    Sun J; Raymundo MAV; Chang CA
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations.
    Wolf S; Amaral M; Lowinski M; Vallée F; Musil D; Güldenhaupt J; Dreyer MK; Bomke J; Frech M; Schlitter J; Gerwert K
    J Chem Inf Model; 2019 Dec; 59(12):5135-5147. PubMed ID: 31697501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding Reveals Transition State Stabilizing Interactions.
    Lotz SD; Dickson A
    J Am Chem Soc; 2018 Jan; 140(2):618-628. PubMed ID: 29303257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations.
    Kim S; Oshima H; Zhang H; Kern NR; Re S; Lee J; Roux B; Sugita Y; Jiang W; Im W
    J Chem Theory Comput; 2020 Nov; 16(11):7207-7218. PubMed ID: 33112150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of structural-kinetic and structural-thermodynamic relationships for thrombin inhibitors.
    Winquist J; Geschwindner S; Xue Y; Gustavsson L; Musil D; Deinum J; Danielson UH
    Biochemistry; 2013 Jan; 52(4):613-26. PubMed ID: 23290007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.
    Deganutti G; Moro S
    Future Med Chem; 2017 Apr; 9(5):507-523. PubMed ID: 28362130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.