These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29308545)

  • 21. Impedance measurement system for determination of capacitive electrode coupling.
    Eilebrecht B; Willkomm J; Pohl A; Wartzek T; Leonhardt S
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):682-9. PubMed ID: 24232629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression.
    Van Helleputte N; Kim S; Kim H; Kim JP; Van Hoof C; Yazicioglu RF
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):552-61. PubMed ID: 23853256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Programmable ExG biopotential front-end IC for wearable applications.
    Teng SL; Rieger R; Lin YB
    IEEE Trans Biomed Circuits Syst; 2014 Aug; 8(4):543-51. PubMed ID: 25073129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 160 μW 8-Channel Active Electrode System for EEG Monitoring.
    Jiawei Xu ; Yazicioglu RF; Grundlehner B; Harpe P; Makinwa KA; Van Hoof C
    IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):555-67. PubMed ID: 23852553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-Power High-Input-Impedance EEG Signal Acquisition SoC With Fully Integrated IA and Signal-Specific ADC for Wearable Applications.
    Tohidi M; Kargaard Madsen J; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1437-1450. PubMed ID: 31443053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AC coupled three op-amp biopotential amplifier with active DC suppression.
    Spinelli EM; Mayosky MA
    IEEE Trans Biomed Eng; 2000 Dec; 47(12):1616-9. PubMed ID: 11125597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Chopped Neural Front-End Featuring Input Impedance Boosting With Suppressed Offset-Induced Charge Transfer.
    Reich S; Sporer M; Ortmanns M
    IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):402-411. PubMed ID: 33989158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Power Adaptive, 1.22-pW/Hz, 10-MHz Read-Out Front-End for Bio-Impedance Measurement.
    Takhti M; Odame K
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):725-734. PubMed ID: 31135369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Wideband Noise and Harmonic Distortion Canceling Low-Noise Amplifier for High-Frequency Ultrasound Transducers.
    Tang Y; Feng Y; Hu H; Fang C; Deng H; Zhang R; Zou J; Chen J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-contact electrocardiogram measuring method based on capacitance coupling electrodes with ultra-high input impedance.
    Li J; Wang Y; Li C; Xu Z; Zhao Z; Raza SA; Wang Y
    Rev Sci Instrum; 2022 Mar; 93(3):034101. PubMed ID: 35365001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier With 1.96 Noise Efficiency Factor.
    Tzu-Yun Wang ; Min-Rui Lai ; Twigg CM; Sheng-Yu Peng
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):411-22. PubMed ID: 24108476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determining the input impedance of ECG amplifiers using accurate electrode modelling.
    Maji S; Burke MJ
    Biomed Phys Eng Express; 2020 Jan; 6(1):015030. PubMed ID: 33438618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-noise Transimpedance Amplifier Design using Chopper-stabilized Technique for Nanopore Applications.
    Park Y; Yun JD; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System.
    Wu CY; Cheng CH; Chen ZX
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):543-553. PubMed ID: 29877818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple and reproducible capacitive electrode.
    Spinelli E; Guerrero F; García P; Haberman M
    Med Eng Phys; 2016 Mar; 38(3):286-9. PubMed ID: 26792172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research and Optimization of High-Performance Front-End Circuit Noise for Inertial Sensors.
    Chen Y; Liu X; Wang L; Yu T; Wang Z; Xue K; Sui Y; Chen Y
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the effect of body capacitance to ground in tetrapolar bioimpedance measurements.
    Aliau-Bonet C; Pallas-Areny R
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3405-11. PubMed ID: 22955870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple two-electrode biosignal amplifier.
    Dobrev D; Neycheva T; Mudrov N
    Med Biol Eng Comput; 2005 Nov; 43(6):725-30. PubMed ID: 16594298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.
    Rezaei M; Maghsoudloo E; Bories C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):271-280. PubMed ID: 29570055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-electrode non-differential biopotential amplifier.
    Dobrev D
    Med Biol Eng Comput; 2002 Sep; 40(5):546-9. PubMed ID: 12452415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.