These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29308651)

  • 1. Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers.
    Xu T; Song Y; Gao W; Wu T; Xu LP; Zhang X; Wang S
    ACS Sens; 2018 Jan; 3(1):72-78. PubMed ID: 29308651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Superwettable Tapes for On-Site Detection of Heavy Metals.
    He X; Xu T; Gao W; Xu LP; Pan T; Zhang X
    Anal Chem; 2018 Dec; 90(24):14105-14110. PubMed ID: 30411879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superwettable microchips with improved spot homogeneity toward sensitive biosensing.
    Chen Y; Xu LP; Meng J; Deng S; Ma L; Zhang S; Zhang X; Wang S
    Biosens Bioelectron; 2018 Apr; 102():418-424. PubMed ID: 29175217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superwettable Microchips as a Platform toward Microgravity Biosensing.
    Xu T; Shi W; Huang J; Song Y; Zhang F; Xu LP; Zhang X; Wang S
    ACS Nano; 2017 Jan; 11(1):621-626. PubMed ID: 27992718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible and Superwettable Bands as a Platform toward Sweat Sampling and Sensing.
    He X; Xu T; Gu Z; Gao W; Xu LP; Pan T; Zhang X
    Anal Chem; 2019 Apr; 91(7):4296-4300. PubMed ID: 30880389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired superwettable micropatterns for biosensing.
    Xu T; Xu LP; Zhang X; Wang S
    Chem Soc Rev; 2019 Jun; 48(12):3153-3165. PubMed ID: 31093627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and Controllable Design of Robust Superwettable Microchips by a Click Reaction for Efficient
    Huang J; Yang H; Mao J; Guo F; Cheng Y; Chen Z; Wang X; Li X; Lai Y
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6186-6195. PubMed ID: 33405526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing.
    Chen Y; Min X; Zhang X; Zhang F; Lu S; Xu LP; Lou X; Xia F; Zhang X; Wang S
    Biosens Bioelectron; 2018 Jul; 111():124-130. PubMed ID: 29660583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultratrace DNA Detection Based on the Condensing-Enrichment Effect of Superwettable Microchips.
    Xu LP; Chen Y; Yang G; Shi W; Dai B; Li G; Cao Y; Wen Y; Zhang X; Wang S
    Adv Mater; 2015 Nov; 27(43):6878-84. PubMed ID: 26426114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired Superwettable Surface for the Detection of Cancer Biomarker: A Mini Review.
    Yang YJ; Gao ZF
    Technol Cancer Res Treat; 2022; 21():15330338221110670. PubMed ID: 35790461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers.
    Uludag Y; Narter F; Sağlam E; Köktürk G; Gök MY; Akgün M; Barut S; Budak S
    Anal Bioanal Chem; 2016 Nov; 408(27):7775-7783. PubMed ID: 27562751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superwettable nanodendritic gold substrates for direct miRNA SERS detection.
    Song Y; Xu T; Xu LP; Zhang X
    Nanoscale; 2018 Dec; 10(45):20990-20994. PubMed ID: 30406246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired superwettable electrodes towards electrochemical biosensing.
    Zhu Q; Yang Y; Gao H; Xu LP; Wang S
    Chem Sci; 2022 May; 13(18):5069-5084. PubMed ID: 35655548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
    Khondakar KR; Dey S; Wuethrich A; Sina AA; Trau M
    Acc Chem Res; 2019 Aug; 52(8):2113-2123. PubMed ID: 31293158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated individually electrochemical array for simultaneously detecting multiple Alzheimer's biomarkers.
    Song Y; Xu T; Zhu Q; Zhang X
    Biosens Bioelectron; 2020 Aug; 162():112253. PubMed ID: 32392158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired wettable-nonwettable micropatterns for emerging applications.
    Yang Y; Xu LP; Zhang X; Wang S
    J Mater Chem B; 2020 Sep; 8(36):8101-8115. PubMed ID: 32785360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superwettable colloidal crystal micropatterns on butterfly wing surface for ultrasensitive detection.
    Shao C; Chi J; Chen Z; Cai L; Zhao Y
    J Colloid Interface Sci; 2019 Jun; 546():122-129. PubMed ID: 30909117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.
    Chang Y; Zhuo Y; Chai Y; Yuan R
    Anal Chem; 2017 Aug; 89(16):8266-8272. PubMed ID: 28727412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical immunosensor based on superwettable microdroplet array for detecting multiple Alzheimer's disease biomarkers.
    Huang Z; Li M; Zhang L; Liu Y
    Front Bioeng Biotechnol; 2022; 10():1029428. PubMed ID: 36329700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Superwettable Microspine Chips with Directional Droplet Transportation for Biosensing.
    Chen Y; Li K; Zhang S; Qin L; Deng S; Ge L; Xu LP; Ma L; Wang S; Zhang X
    ACS Nano; 2020 Apr; 14(4):4654-4661. PubMed ID: 32251583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.