BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29308701)

  • 1. The application of electrospinning used in meniscus tissue engineering.
    Chen M; Gao S; Wang P; Li Y; Guo W; Zhang Y; Wang M; Xiao T; Zhang Z; Zhang X; Jing X; Li X; Liu S; Guo Q; Xi T
    J Biomater Sci Polym Ed; 2018 Apr; 29(5):461-475. PubMed ID: 29308701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions.
    Ngadiman NHA; Noordin MY; Idris A; Kurniawan D
    Proc Inst Mech Eng H; 2017 Jul; 231(7):597-616. PubMed ID: 28347262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix components by electrospinning.
    López-Calzada G; Hernandez-Martínez AR; Cruz-Soto M; Ramírez-Cardona M; Rangel D; Molina GA; Luna-Barcenas G; Estevez M
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():893-905. PubMed ID: 26838921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model.
    Gao S; Chen M; Wang P; Li Y; Yuan Z; Guo W; Zhang Z; Zhang X; Jing X; Li X; Liu S; Sui X; Xi T; Guo Q
    Acta Biomater; 2018 Jun; 73():127-140. PubMed ID: 29654991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meniscus tissue engineering on the nanoscale: from basic principles to clinical application.
    Baker BM; Gee AO; Sheth NP; Huffman GR; Sennett BJ; Schaer TP; Mauck RL
    J Knee Surg; 2009 Jan; 22(1):45-59. PubMed ID: 19216353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advancements in electrospinning design for tissue engineering applications: A review.
    Kishan AP; Cosgriff-Hernandez EM
    J Biomed Mater Res A; 2017 Oct; 105(10):2892-2905. PubMed ID: 28556551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties.
    Volova T; Goncharov D; Sukovatyi A; Shabanov A; Nikolaeva E; Shishatskaya E
    J Biomater Sci Polym Ed; 2014; 25(4):370-93. PubMed ID: 24295429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration.
    Wang X; Ding Y; Li H; Mo X; Wu J
    J Biomed Mater Res B Appl Biomater; 2022 Apr; 110(4):923-949. PubMed ID: 34619021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel.
    Baek J; Chen X; Sovani S; Jin S; Grogan SP; D'Lima DD
    J Orthop Res; 2015 Apr; 33(4):572-83. PubMed ID: 25640671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crimped Electrospun Fibers for Tissue Engineering.
    Chao PG
    Methods Mol Biol; 2018; 1758():151-159. PubMed ID: 29679329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning of polymeric nanofibers for tissue engineering applications: a review.
    Pham QP; Sharma U; Mikos AG
    Tissue Eng; 2006 May; 12(5):1197-211. PubMed ID: 16771634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Stimulus Based Strategies for Meniscus Tissue Engineering and Regeneration.
    Chen M; Guo W; Gao S; Hao C; Shen S; Zhang Z; Wang Z; Li X; Jing X; Zhang X; Yuan Z; Wang M; Zhang Y; Peng J; Wang A; Wang Y; Sui X; Liu S; Guo Q
    Tissue Eng Part B Rev; 2018 Oct; 24(5):392-402. PubMed ID: 29897012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.
    Heo J; Koh RH; Shim W; Kim HD; Yim HG; Hwang NS
    Drug Deliv Transl Res; 2016 Apr; 6(2):148-58. PubMed ID: 25809935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning.
    Siqueira L; Passador FR; Costa MM; Lobo AO; Sousa E
    Mater Sci Eng C Mater Biol Appl; 2015; 52():135-43. PubMed ID: 25953550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances of research on preparation of tendon tissue engineered scaffolds using electrospinning].
    Tan J; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jul; 26(7):865-8. PubMed ID: 22905627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of scaffold mean pore size in meniscus regeneration.
    Zhang ZZ; Jiang D; Ding JX; Wang SJ; Zhang L; Zhang JY; Qi YS; Chen XS; Yu JK
    Acta Biomater; 2016 Oct; 43():314-326. PubMed ID: 27481291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinning: applications in drug delivery and tissue engineering.
    Sill TJ; von Recum HA
    Biomaterials; 2008 May; 29(13):1989-2006. PubMed ID: 18281090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties.
    Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering.
    Zou F; Li R; Jiang J; Mo X; Gu G; Guo Z; Chen Z
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2255-2270. PubMed ID: 29034774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.