These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 29308803)
1. In situ analytical techniques for battery interface analysis. Tripathi AM; Su WN; Hwang BJ Chem Soc Rev; 2018 Feb; 47(3):736-851. PubMed ID: 29308803 [TBL] [Abstract][Full Text] [Related]
2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
3. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties. Zhang Z; Smith K; Jervis R; Shearing PR; Miller TS; Brett DJL ACS Appl Mater Interfaces; 2020 Aug; 12(31):35132-35141. PubMed ID: 32657567 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the Impact of Ether and Carbonate Electrolytes on the Solid-Electrolyte Interface and the Electrochemical Performances of ZnSe@C Core-Shell Composites as Anodes of Lithium-Ion Batteries. Ma D; Zhu Q; Li X; Gao H; Wang X; Kang X; Tian Y ACS Appl Mater Interfaces; 2019 Feb; 11(8):8009-8017. PubMed ID: 30702859 [TBL] [Abstract][Full Text] [Related]
5. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Wei S; Choudhury S; Tu Z; Zhang K; Archer LA Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617 [TBL] [Abstract][Full Text] [Related]
7. A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Cheng XB; Zhang R; Zhao CZ; Wei F; Zhang JG; Zhang Q Adv Sci (Weinh); 2016 Mar; 3(3):1500213. PubMed ID: 27774393 [TBL] [Abstract][Full Text] [Related]
8. Combined Electrochemical, XPS, and STXM Study of Lithium Nitride as a Protective Coating for Lithium Metal and Lithium-Sulfur Batteries. Fitch SDS; Moehl GE; Meddings N; Fop S; Soulé S; Lee TL; Kazemian M; Garcia-Araez N; Hector AL ACS Appl Mater Interfaces; 2023 Aug; 15(33):39198-39210. PubMed ID: 37552207 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667 [TBL] [Abstract][Full Text] [Related]
10. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081 [TBL] [Abstract][Full Text] [Related]
11. Solid Electrolyte Interface in Zn-Based Battery Systems. Wang X; Li X; Fan H; Ma L Nanomicro Lett; 2022 Oct; 14(1):205. PubMed ID: 36261666 [TBL] [Abstract][Full Text] [Related]
12. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Blanc F; Leskes M; Grey CP Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242 [TBL] [Abstract][Full Text] [Related]
13. Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. Lou S; Zhang F; Fu C; Chen M; Ma Y; Yin G; Wang J Adv Mater; 2021 Feb; 33(6):e2000721. PubMed ID: 32705725 [TBL] [Abstract][Full Text] [Related]
14. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919 [TBL] [Abstract][Full Text] [Related]
15. Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries. Zheng J; Yan P; Cao R; Xiang H; Engelhard MH; Polzin BJ; Wang C; Zhang JG; Xu W ACS Appl Mater Interfaces; 2016 Mar; 8(8):5715-22. PubMed ID: 26862677 [TBL] [Abstract][Full Text] [Related]
16. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Lee B; Paek E; Mitlin D; Lee SW Chem Rev; 2019 Apr; 119(8):5416-5460. PubMed ID: 30946573 [TBL] [Abstract][Full Text] [Related]
17. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Wu J; Liu S; Han F; Yao X; Wang C Adv Mater; 2021 Feb; 33(6):e2000751. PubMed ID: 32812301 [TBL] [Abstract][Full Text] [Related]
18. Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. Shi Y; Wan J; Liu GX; Zuo TT; Song YX; Liu B; Guo YG; Wen R; Wan LJ Angew Chem Int Ed Engl; 2020 Oct; 59(41):18120-18125. PubMed ID: 32602612 [TBL] [Abstract][Full Text] [Related]
19. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Mehdi BL; Qian J; Nasybulin E; Park C; Welch DA; Faller R; Mehta H; Henderson WA; Xu W; Wang CM; Evans JE; Liu J; Zhang JG; Mueller KT; Browning ND Nano Lett; 2015 Mar; 15(3):2168-73. PubMed ID: 25705928 [TBL] [Abstract][Full Text] [Related]
20. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy. Matsushita T; Watanabe J; Nakao T; Yamashita S Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i21. PubMed ID: 25359815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]