These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29308982)

  • 21. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations.
    Wolbers T; Büchel C
    J Neurosci; 2005 Mar; 25(13):3333-40. PubMed ID: 15800188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of path integration and representation of spatial context in the retrosplenial cortex.
    Ju M; Gaussier P
    Biol Cybern; 2020 Apr; 114(2):303-313. PubMed ID: 32306125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative BOLD response in the hippocampus during short-term spatial memory retrieval.
    Nilsson J; Ferrier IN; Coventry K; Bester A; Finkelmeyer A
    J Cogn Neurosci; 2013 Aug; 25(8):1358-71. PubMed ID: 23530922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and functional brain network of human retrosplenial cortex.
    Li P; Shan H; Liang S; Nie B; Duan S; Huang Q; Zhang T; Sun X; Feng T; Ma L; Shan B; Li D; Liu H
    Neurosci Lett; 2018 May; 674():24-29. PubMed ID: 29530816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.
    Wegman J; Tyborowska A; Janzen G
    Hippocampus; 2014 Jul; 24(7):853-68. PubMed ID: 24706395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Representations of tactile object location in the retrosplenial cortex.
    Lande AS; Garvert AC; Ebbesen NC; Jordbræk SV; Vervaeke K
    Curr Biol; 2023 Nov; 33(21):4599-4610.e7. PubMed ID: 37774708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-Factor Representation of the Environmental Context in the Retrosplenial Cortex.
    Miller AMP; Serrichio AC; Smith DM
    Cereb Cortex; 2021 Mar; 31(5):2720-2728. PubMed ID: 33386396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct representations of spatial and categorical relationships across human scene-selective cortex.
    Persichetti AS; Dilks DD
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21312-21317. PubMed ID: 31570605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study.
    Hirshhorn M; Grady C; Rosenbaum RS; Winocur G; Moscovitch M
    Neuropsychologia; 2012 Nov; 50(13):3094-106. PubMed ID: 22910274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. I can see where you would be: Patterns of fMRI activity reveal imagined landmarks.
    Boccia M; Sulpizio V; Palermo L; Piccardi L; Guariglia C; Galati G
    Neuroimage; 2017 Jan; 144(Pt A):174-182. PubMed ID: 27554528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential involvement of the anterior and posterior hippocampus, parahippocampus, and retrosplenial cortex in making precise judgments of spatial distance and object size for remotely acquired memories of environments and objects.
    Ziegler MG; Liu ZX; Arsenault J; Dang C; Grady C; Rosenbaum RS; Moscovitch M
    Cereb Cortex; 2023 Sep; 33(18):10139-10154. PubMed ID: 37522288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "I have often walked down this street before": fMRI studies on the hippocampus and other structures during mental navigation of an old environment.
    Rosenbaum RS; Ziegler M; Winocur G; Grady CL; Moscovitch M
    Hippocampus; 2004; 14(7):826-35. PubMed ID: 15382253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The occipital place area represents first-person perspective motion information through scenes.
    Kamps FS; Lall V; Dilks DD
    Cortex; 2016 Oct; 83():17-26. PubMed ID: 27474914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural basis of endogenous and exogenous spatial orienting. A functional MRI study.
    Rosen AC; Rao SM; Caffarra P; Scaglioni A; Bobholz JA; Woodley SJ; Hammeke TA; Cunningham JM; Prieto TE; Binder JR
    J Cogn Neurosci; 1999 Mar; 11(2):135-52. PubMed ID: 10198130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The parahippocampal place area and hippocampus encode the spatial significance of landmark objects.
    Sun L; Frank SM; Epstein RA; Tse PU
    Neuroimage; 2021 Aug; 236():118081. PubMed ID: 33882351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dynamics of memory consolidation of landmarks.
    van Ekert J; Wegman J; Jansen C; Takashima A; Janzen G
    Hippocampus; 2017 Apr; 27(4):393-404. PubMed ID: 28032685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hippocampal Ripple Coordinates Retrosplenial Inhibitory Neurons during Slow-Wave Sleep.
    Opalka AN; Huang WQ; Liu J; Liang H; Wang DV
    Cell Rep; 2020 Jan; 30(2):432-441.e3. PubMed ID: 31940487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The separate and combined properties of the granular (area 29) and dysgranular (area 30) retrosplenial cortex.
    Aggleton JP; Yanakieva S; Sengpiel F; Nelson AJ
    Neurobiol Learn Mem; 2021 Nov; 185():107516. PubMed ID: 34481970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural responses to visual scenes reveals inconsistencies between fMRI adaptation and multivoxel pattern analysis.
    Epstein RA; Morgan LK
    Neuropsychologia; 2012 Mar; 50(4):530-43. PubMed ID: 22001314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.