These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29309147)

  • 1. SCScore: Synthetic Complexity Learned from a Reaction Corpus.
    Coley CW; Rogers L; Green WH; Jensen KF
    J Chem Inf Model; 2018 Feb; 58(2):252-261. PubMed ID: 29309147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TIN-a combinatorial compound collection of synthetically feasible multicomponent synthesis products.
    Dorschner KV; Toomey D; Brennan MP; Heinemann T; Duffy FJ; Nolan KB; Cox D; Adamo MF; Chubb AJ
    J Chem Inf Model; 2011 May; 51(5):986-95. PubMed ID: 21495663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making "real" molecules in virtual space.
    Pirok G; Maté N; Varga J; Szegezdi J; Vargyas M; Dórant S; Csizmadia F
    J Chem Inf Model; 2006; 46(2):563-8. PubMed ID: 16562984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.
    Baylon JL; Cilfone NA; Gulcher JR; Chittenden TW
    J Chem Inf Model; 2019 Feb; 59(2):673-688. PubMed ID: 30642173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planning chemical syntheses with deep neural networks and symbolic AI.
    Segler MHS; Preuss M; Waller MP
    Nature; 2018 Mar; 555(7698):604-610. PubMed ID: 29595767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting CHMTRN (CHeMistry TRaNslator) for a New Use.
    Judson PN; Ihlenfeldt WD; Patel H; Delannée V; Tarasova N; Nicklaus MC
    J Chem Inf Model; 2020 Jul; 60(7):3336-3341. PubMed ID: 32539385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Retrosynthetic Planning through Simulated Experience.
    Schreck JS; Coley CW; Bishop KJM
    ACS Cent Sci; 2019 Jun; 5(6):970-981. PubMed ID: 31263756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CROSS: an efficient workflow for reaction-driven rescaffolding and side-chain optimization using robust chemical reactions and available reagents.
    Evers A; Hessler G; Wang LH; Werrel S; Monecke P; Matter H
    J Med Chem; 2013 Jun; 56(11):4656-70. PubMed ID: 23627295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex molecules: do they add value?
    Selzer P; Roth HJ; Ertl P; Schuffenhauer A
    Curr Opin Chem Biol; 2005 Jun; 9(3):310-6. PubMed ID: 15939334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Chemical Toxicity Using Ontology Information of Chemicals.
    Jiang Z; Xu R; Dong C
    Comput Math Methods Med; 2015; 2015():246374. PubMed ID: 26508991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph mining: procedure, application to drug discovery and recent advances.
    Takigawa I; Mamitsuka H
    Drug Discov Today; 2013 Jan; 18(1-2):50-7. PubMed ID: 22889967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Search for complexity generating chemical transformations by combining connectivity analysis and cascade transformation patterns.
    Nowak G; Fic G
    J Chem Inf Model; 2010 Aug; 50(8):1369-77. PubMed ID: 20681604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Ring Breaker": Neural Network Driven Synthesis Prediction of the Ring System Chemical Space.
    Thakkar A; Selmi N; Reymond JL; Engkvist O; Bjerrum EJ
    J Med Chem; 2020 Aug; 63(16):8791-8808. PubMed ID: 32352286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the realisation of lead-oriented synthesis.
    Doveston R; Marsden S; Nelson A
    Drug Discov Today; 2014 Jul; 19(7):813-9. PubMed ID: 24239725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Very large virtual compound spaces: construction, storage and utility in drug discovery.
    Peng Z
    Drug Discov Today Technol; 2013 Sep; 10(3):e387-94. PubMed ID: 24050135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.
    Hu Q; Peng Z; Kostrowicki J; Kuki A
    Methods Mol Biol; 2011; 685():253-76. PubMed ID: 20981528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.