These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29309162)

  • 1. Generation of Solid Foams with Controlled Polydispersity Using Microfluidics.
    Andrieux S; Drenckhan W; Stubenrauch C
    Langmuir; 2018 Jan; 34(4):1581-1590. PubMed ID: 29309162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid foam templating - A route to tailor-made polymer foams.
    Andrieux S; Quell A; Stubenrauch C; Drenckhan W
    Adv Colloid Interface Sci; 2018 Jun; 256():276-290. PubMed ID: 29728156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics Mediated Production of Foams for Biomedical Applications.
    Maimouni I; Cejas CM; Cossy J; Tabeling P; Russo M
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring and visualising pore openings in gelatin-based hydrogel foams.
    Dehli F; Southan A; Drenckhan W; Stubenrauch C
    J Colloid Interface Sci; 2021 Apr; 588():326-335. PubMed ID: 33422781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse liquid foams via membrane foaming.
    Carballido L; Dabrowski ML; Dehli F; Koch L; Stubenrauch C
    J Colloid Interface Sci; 2020 May; 568():46-53. PubMed ID: 32078937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse polystyrene foams via polymerization of foamed emulsions: structure and mechanical properties.
    Elsing J; Stefanov T; Gilchrist MD; Stubenrauch C
    Phys Chem Chem Phys; 2017 Feb; 19(7):5477-5485. PubMed ID: 28165070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of foams by the combined effects of an insoluble gas species and gelation.
    Bey H; Wintzenrieth F; Ronsin O; Höhler R; Cohen-Addad S
    Soft Matter; 2017 Oct; 13(38):6816-6830. PubMed ID: 28825087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan macroporous foams obtained in highly concentrated emulsions as templates.
    Miras J; Vílchez S; Solans C; Esquena J
    J Colloid Interface Sci; 2013 Nov; 410():33-42. PubMed ID: 24011788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-Cellular Alumina Foams with Hierarchical Strut Porosity by Ice Templating: A Thickening Agent Study.
    Dammler K; Schelm K; Betke U; Fey T; Scheffler M
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33668298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques.
    Colosi C; Costantini M; Barbetta A; Pecci R; Bedini R; Dentini M
    Langmuir; 2013 Jan; 29(1):82-91. PubMed ID: 23214919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Foam Development Stages by Non-Destructive Testing Technology Using the Freeze Foaming Process.
    Maier J; Behnisch T; Geske V; Ahlhelm M; Werner D; Moritz T; Michaelis A; Gude M
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating.
    Salerno A; Iannace S; Netti PA
    Macromol Biosci; 2008 Jul; 8(7):655-64. PubMed ID: 18350540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating scaffolds by microfluidics.
    Chung KY; Mishra NC; Wang CC; Lin FH; Lin KH
    Biomicrofluidics; 2009 Apr; 3(2):22403. PubMed ID: 19693338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.
    Costantini M; Colosi C; Jaroszewicz J; Tosato A; Święszkowski W; Dentini M; Garstecki P; Barbetta A
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23660-71. PubMed ID: 26436204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.
    Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ
    Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Step Generation of Alginate-Based Hydrogel Foams Using CO
    Ben Djemaa I; Andrieux S; Auguste S; Jacomine L; Tarnowska M; Drenckhan-Andreatta W
    Gels; 2022 Jul; 8(7):. PubMed ID: 35877529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micrometric Monodisperse Solid Foams as Complete Photonic Bandgap Materials.
    Maimouni I; Morvaridi M; Russo M; Lui G; Morozov K; Cossy J; Florescu M; Labousse M; Tabeling P
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32061-32068. PubMed ID: 32530594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
    Carugo D; Ankrett DN; Zhao X; Zhang X; Hill M; O'Byrne V; Hoad J; Arif M; Wright DD; Lewis AL
    Phlebology; 2016 May; 31(4):283-95. PubMed ID: 26036246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks.
    Li S; Xiang W; Järvinen M; Lappalainen T; Salminen K; Rojas OJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19827-35. PubMed ID: 27398988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability of polydisperse solid foams.
    Langlois V; Nguyen CT; Detrez F; Guilleminot J; Perrot C
    Phys Rev E; 2022 Jan; 105(1-2):015101. PubMed ID: 35193282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.