These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 29309211)

  • 1. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review).
    Deshmukh MA; Shirsat MD; Ramanaviciene A; Ramanavicius A
    Crit Rev Anal Chem; 2018 Jul; 48(4):293-304. PubMed ID: 29309211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals.
    Li YK; Yang T; Chen ML; Wang JH
    Crit Rev Anal Chem; 2021; 51(4):353-372. PubMed ID: 32182101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae biochar-derived carbon dots and their application in heavy metal sensing in aqueous systems.
    Plácido J; Bustamante-López S; Meissner KE; Kelly DE; Kelly SL
    Sci Total Environ; 2019 Mar; 656():531-539. PubMed ID: 30529956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.
    Cui L; Wu J; Ju H
    Biosens Bioelectron; 2015 Jan; 63():276-286. PubMed ID: 25108108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental remediation of heavy metal ions by novel-nanomaterials: A review.
    Wu Y; Pang H; Liu Y; Wang X; Yu S; Fu D; Chen J; Wang X
    Environ Pollut; 2019 Mar; 246():608-620. PubMed ID: 30605816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.
    Bansod B; Kumar T; Thakur R; Rana S; Singh I
    Biosens Bioelectron; 2017 Aug; 94():443-455. PubMed ID: 28340464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection.
    Ramdzan NSM; Fen YW; Anas NAA; Omar NAS; Saleviter S
    Molecules; 2020 May; 25(11):. PubMed ID: 32486124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: A review.
    Zhang Y; Luo J; Zhang H; Li T; Xu H; Sun Y; Gu X; Hu X; Gao B
    Sci Total Environ; 2022 Dec; 852():158201. PubMed ID: 36028029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of nanoscale carbon-based materials in heavy metal sensing and detection.
    Wanekaya AK
    Analyst; 2011 Nov; 136(21):4383-91. PubMed ID: 21894336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocomposite Platform Based on EDTA Modified Ppy/SWNTs for the Sensing of Pb(II) Ions by Electrochemical Method.
    Deshmukh MA; Bodkhe GA; Shirsat S; Ramanavicius A; Shirsat MD
    Front Chem; 2018; 6():451. PubMed ID: 30327766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection.
    Dhara K; Debiprosad RM
    Anal Biochem; 2019 Dec; 586():113415. PubMed ID: 31479632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal ion detection using functional nucleic acids and nanomaterials.
    Huang J; Su X; Li Z
    Biosens Bioelectron; 2017 Oct; 96():127-139. PubMed ID: 28478384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: an electrochemical sensing platform toward heavy metals.
    Pan D; Wang Y; Chen Z; Lou T; Qin W
    Anal Chem; 2009 Jun; 81(12):5088-94. PubMed ID: 19435334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array.
    Liu G; Lin Y; Tu Y; Ren Z
    Analyst; 2005 Jul; 130(7):1098-101. PubMed ID: 15965535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.
    Tang WW; Zeng GM; Gong JL; Liang J; Xu P; Zhang C; Huang BB
    Sci Total Environ; 2014 Jan; 468-469():1014-27. PubMed ID: 24095965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical composite polyaniline-(electrospun polystyrene) fibers applied to heavy metal remediation.
    Alcaraz-Espinoza JJ; Chávez-Guajardo AE; Medina-Llamas JC; Andrade CA; de Melo CP
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7231-40. PubMed ID: 25761543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants.
    Liaquat H; Imran M; Latif S; Hussain N; Bilal M
    Environ Res; 2022 Nov; 214(Pt 1):113795. PubMed ID: 35803339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection.
    Wang X; Kong L; Zhou S; Ma C; Lin W; Sun X; Kirsanov D; Legin A; Wan H; Wang P
    Talanta; 2022 Mar; 239():122903. PubMed ID: 34857381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors.
    Lahiff E; Lynam C; Gilmartin N; O'Kennedy R; Diamond D
    Anal Bioanal Chem; 2010 Oct; 398(4):1575-89. PubMed ID: 20706831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.