These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29309273)

  • 1. Micro-flock patterns and macro-clusters in chiral active Brownian disks.
    Levis D; Liebchen B
    J Phys Condens Matter; 2018 Feb; 30(8):084001. PubMed ID: 29309273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective Behavior of Chiral Active Matter: Pattern Formation and Enhanced Flocking.
    Liebchen B; Levis D
    Phys Rev Lett; 2017 Aug; 119(5):058002. PubMed ID: 28949732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous phase separation and pattern formation in chiral active mixtures.
    Levis D; Liebchen B
    Phys Rev E; 2019 Jul; 100(1-1):012406. PubMed ID: 31499849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.
    Levis D; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.
    Alarcón F; Valeriani C; Pagonabarraga I
    Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical approach to chiral active systems: Suppressed phase separation of interacting Brownian circle swimmers.
    Bickmann J; Bröker S; Jeggle J; Wittkowski R
    J Chem Phys; 2022 May; 156(19):194904. PubMed ID: 35597664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active particles in noninertial frames: How to self-propel on a carousel.
    Löwen H
    Phys Rev E; 2019 Jun; 99(6-1):062608. PubMed ID: 31330628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Self-Assembly Pathways of Active Colloidal Clusters.
    Zhang J; Yan J; Granick S
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5166-9. PubMed ID: 27010594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers.
    Yoshinaga N; Liverpool TB
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):76. PubMed ID: 29926216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swarm behavior of self-propelled rods and swimming flagella.
    Yang Y; Marceau V; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031904. PubMed ID: 21230105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotating states of self-propelling particles in two dimensions.
    Chen HY; Leung KT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056107. PubMed ID: 16802998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory for controlling individual self-propelled micro-swimmers by photon nudging I: directed transport.
    Selmke M; Khadka U; Bregulla AP; Cichos F; Yang H
    Phys Chem Chem Phys; 2018 Apr; 20(15):10502-10520. PubMed ID: 29560993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traveling bands, clouds, and vortices of chiral active matter.
    Kruk N; Carrillo JA; Koeppl H
    Phys Rev E; 2020 Aug; 102(2-1):022604. PubMed ID: 32942464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of magnetic holes in a rotating magnetic field.
    Cernák J; Helgesen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061401. PubMed ID: 19256835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size dependent efficiency of photophoretic swimmers.
    Bregulla AP; Cichos F
    Faraday Discuss; 2015; 184():381-91. PubMed ID: 26402861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.